首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Splice junction and possible branch point sequences have been collected from 177 plant introns. Consensus sequences for the 5' and 3' splice junctions and for possible branch points have been derived. The splice junction consensus sequences were virtually identical to those of animal introns except that the polypyrimidine stretch at the 3' splice junction was less pronounced in the plant introns. A search for possible branch points with sequences related to the yeast, vertebrate and fungal consensus sequences revealed a similar sequence in plant introns.  相似文献   

2.
Summary A plant proteinase gene naturally occuring in the Kiwi fruit plant (Actinidia chinensis) has been expressed in a yeast Saccharomyces cerevisiae. Different gene constructions consisting of different portions of the whole actinidin-encoding gene have been created and expressed using an expression-secretion yeast vector. It was observed that the amino- and carboxy-terminal extensions of the actinidin-encoding gene were required for the correct expression of the gene in yeast. A gene construction lacking both amino- and C-terminal extensions did not result in a detectable protein product. Similarly, a gene construction consisting of the amino-terminal extension plus mature actinidin-encoding DNA did not result in a detectable expression. However, intracellular expression was observed when a gene construction consisting of mature actinidin-encoding DNA plus C-terminal extension portion was employed. The expressed polypeptide was found however not to be correctly processed as it had a bigger size than the native actinidin. The correctly processed polypeptide was expressed intracellularly when the full-length actinidin cDNA was expressed in a vacuolar protease-proficient yeast strain. However, when a vacuolar protease-deficient yeast strain was employed, it was found that the precursor protein was not correctly processed, suggesting that the actinidin precursor had entered the vacuole and undergone proteolytic processing. The full-length actinidin cDNA consisted of the amino-terminal extension DNA, mature actinidin-encoding DNA, and C-terminal extension DNA. The results thus suggested that both amino- and C-terminal extensions were required for correct expression and processing of actinidin in yeast. The intracellular expression also suggested that the actinidin-encoding sequences contain intracellular targeting sequences which override the secretion signal included in the expression-secretion vector.  相似文献   

3.
The amino acid sequences of the 51% different horseradish peroxidase HRP C and turnip peroxidase TP 7 have previously been completed by us, but the three-dimensional structures are unknown. Recently the amino acid sequence and the crystal structure of yeast cytochrome c peroxidase have appeared. The three known apoperoxidases consist of 300 +/- 8 amino acid residues. The sequences have now been aligned and show 18% and 16% identity only, between the yeast peroxidase and plant peroxidase HRP C and TP 7, respectively. We show that different structural tests all support similar protein folds in plant peroxidases and yeast peroxidase and, therefore, a common evolutionary origin. The following tests support this thesis: (a) predicted helices in the plant peroxidases follow the complex pattern observed in the crystal structure of cytochrome c peroxidase; (b) their hydropathic profiles are similar and agree with observed buried and exposed peptide chain in cytochrome c peroxidase; (c) half-cystines which are distant in the amino acid sequence of plant peroxidases become spatial neighbours when fitted into the cytochrome c peroxidase model; (d) the two-domain structure proposed from limited proteolysis of apoperoxidase HRP C is observed in the crystal structure of cytochrome c peroxidase. The similarities and differences of the plant and yeast peroxidases and the reactive side chains of a plant peroxidase active site are described. The characteristics of Ca2+-binding sequences, derived from several superfamilies, are applied to predict the Ca2+-binding sequences in plant peroxidases.  相似文献   

4.
5.
A full-length cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase (PHGPx) was cloned from Raphanus sativus. The cDNA, designated RsPHGPx, includes an open reading frame which encodes 197 amino acid residues. The alignment of amino acid sequences showed that RsPHGPx had the highest sequence homology to plant PHGPx and contained an N-terminal extension characteristic of a mitochondrial targeting peptide. Northern blot analysis indicated that RsPHGPx was constitutively and ubiquitously expressed during radish development, and its expression was differently regulated by various stress conditions. The expression of RsPHGPx in a yeast PHGPx-deletion mutant significantly rescued the mutant sensitivity to oxidation-sensitive linolenic acid, just as the yeast PHGPx3 gene did. This suggested that RsPHGPx encodes a functional PHGPx protein.  相似文献   

6.
7.
A widely distributed "CAT" family of repetitive DNA sequences   总被引:1,自引:0,他引:1  
The yeast genome contains a family of repetitive sequences consisting primarily of a tandemly arranged trinucleotide, CAT, or a closely related CGT sequence. To characterize similar sequences in divergent organisms, a previously isolated "CAT" sequence was used to isolate homologous genomic clones from a human cell line, an insect and a higher plant. Sequence analyses show that comparable repetitive sequences are widely distributed and may be present in all eukaryotic genomes. In situ hybridization analyses indicate that in yeast, the CAT elements are dispersed among all the chromosomes, and a more detailed analysis in Drosophila indicates that at least one of these sequences maps on the X chromosome between known genetic loci which are actively expressed. Repeated searches of yeast cDNA libraries indicate that these CAT clusters are not expressed but substantial effects on the expression of a cloned gene strongly suggest that they play an important role in gene regulation.  相似文献   

8.
The evolutionary conserved CCAAT binding protein NF-Y is a common regulatory DNA binding protein consisting of three distinct subunits. Unlike yeast and mammals, in which only a single copy of each subunit is encoded,Arabidopsis encodes a multi-gene family for each subunit in its genome. Compared with the NF-Y of mammals or yeast, very little is known about plant NF-Y homologs. HereArabidopsis NF-YA subunits were isolated to determine whether they could form a hete-rotrimeric NF-Y complex with mammalian NF-YB and NF-YC. This resultant chimeric NF-Y complex had DNA binding ability to the same CCAAT sequences as those of the other life systems. Therefore, it is possible that plant NF-Y homologs might have biochemical characteristics similar to mammalian NF-Y, thereby suggesting its functional conservation among organisms.  相似文献   

9.
10.
Autophagy is important for degradation and recycling of intracellular components. In a diversity of genera and species, orthologs and paralogs of the yeast Atg4 and Atg8 proteins are crucial in the biogenesis of double-membrane autophagosomes that carry the cellular cargoes to vacuoles and lysosomes. Although many plant genome sequences are available, the ATG4 and ATG8 sequence analysis is limited to some model plants. We identified 28 ATG4 and 116 ATG8 genes from the available 18 different plant genome sequences. Gene structures and protein domain sequences of ATG4 and ATG8 are conserved in plant lineages. Phylogenetic analyses classified ATG8s into 3 subgroups suggesting divergence from the common ancestor. The ATG8 expansion in plants might be attributed to whole genome duplication, segmental and dispersed duplication, and purifying selection. Our results revealed that the yeast Atg4 processes Arabidopsis ATG8 but not human LC3A (HsLC3A). In contrast, HsATG4B can process yeast and plant ATG8s in vitro but yeast and plant ATG4s cannot process HsLC3A. Interestingly, in Nicotiana benthamiana plants the yeast Atg8 is processed compared to HsLC3A. However, HsLC3A is processed when coexpressed with HsATG4B in plants. Molecular modeling indicates that lack of processing of HsLC3A by plant and yeast ATG4 is not due to lack of interaction with HsLC3A. Our in-depth analyses of ATG4 and ATG8 in the plant lineage combined with results of cross-kingdom ATG8 processing by ATG4 further support the evolutionarily conserved maturation of ATG8. Broad ATG8 processing by HsATG4B and lack of processing of HsLC3A by yeast and plant ATG4s suggest that the cross-kingdom ATG8 processing is determined by ATG8 sequence rather than ATG4.  相似文献   

11.
Various maturation forms of the plant protein thaumatin were expressed in yeast, using a promoter fragment of the glyceraldehyde-3P-dehydrogenase (GAPDH) gene. Plasmids encoding preprothaumatin were shown to direct the synthesis of a processed form of the plant protein. The important role of signal sequences in the expression of the plant protein in yeast was indicated by the observation that plasmids encoding processed thaumatin forms were only poorly expressed, if at all. Nucleotide sequence analysis of the 843 nucleotide GAPDH promoter fragment revealed a characteristic structure with two regions of dyad symmetry containing translational starts of GAPDH and a putative 38 amino acid peptide. A promoter fragment from which the upstream region was deleted proved to be less efficient in thaumatin expression.  相似文献   

12.
13.
The coding sequences of three single-chain variable (scFv) fragments (A4, G4 and H3), which bind to dihydroflavonol-4-reductase (DFR) of Petunia hybrida, and the DFR-encoding sequence were cloned in two-hybrid vectors. The vectors were transformed in the yeast strain HF7c (his3-200, trp1-901, leu2-3) and the scFv-DFR interaction was analyzed by measuring yeast growth on medium without histidine. ScFv-G4 and, to a lesser extent, scFv-A4 could interact with DFR in the yeast nucleus. On the contrary, scFv-H3 showed no interaction with its antigen in yeast. The results of a previous expression analysis of the same scFv fragments in the plant cytosol correlate with those of the two-hybrid test. This suggests that it is possible to evaluate the antigen-scFv interaction in a reducing subcellular environment with the two-hybrid test. Therefore, the yeast two-hybrid system can be useful to identify candidate scFv fragments for intracellular antibody applications.  相似文献   

14.
CTP: phosphocholine cytidylyltransferase is a rate-limiting enzyme in biosynthesis of phosphatidylcholine in plant cells. We have isolated four cDNAs for the cytidylyltransferase from a root cDNA library of Brassica napus by complementation in a yeast cct mutant. The deduced amino-acid sequences of the B. napus enzymes resembled rat and yeast enzymes in the central domain. Although all cytidylyltransferases ever cloned from B. napus and other organisms were predicted to be structurally hydrophilic, the yeast cct mutant transformed with one of the B. napus cDNA clones restored the cytidylyltransferase activity in the microsomal fraction as well as in the soluble fraction. These results are consistent with a recent view that yeast cells contained a machinery for targeting the yeast cytidylyltransferase to membranes, and may indicate that the B. napus enzyme was compatible with the machinery.  相似文献   

15.
Numerous proteins have been identified in yeast and mammalian cells which are involved in trafficking between the endoplasmic reticulum and the Golgi apparatus. A great number of partial cDNA sequences now available from the two major plant model species, Arabidopsis thaliana and Oryza sativa, makes it possible to identify putative plant homologues of known genes/proteins from non-plant species. The authors used this approach to screen the database of Expressed Sequence Tags (dbEST) in order to detect plant homologues of proteins involved in membrane transport between ER and Golgi. Availability of these partial sequences will facilitate the screening of cDNA and genomic libraries otherwise performed using heterologous probes derived from animal and yeast genes. As the plant Golgi complex differs in many respects from its mammalian and yeast counterparts, the dbEST clones found can be directly used for various functional assays (immunoprecipitation, two-hybrid analysis, transgenic plants etc.) to test the exact roles of the encoded proteins and identify their functional partners, some of which may be specific for plants.  相似文献   

16.
目的为研究铝毒及耐铝机制提供更好的模式生物材料和进一步研究耐铝机制提供依据。方法通过对云南龙陵县茶园土壤耐酸铝微生物的筛选、分离和纯化,筛选出一株Y31耐酸铝酵母。结果经D1/D2区域克隆测序获取全长26S rDNA区域序列,构建系统发育树,初步鉴定Y31为长形隐球酵母(Cryptococcus longus)。在LPM培养基及GM培养基上耐铝水平检测表明Y31分别能耐100 mmol/L和50 mmol/L铝。用不同铝浓度处理酵母菌后,进行FDA PI双染色并用荧光显微镜观察,当铝浓度达到100 mmol/L时,出现明显的细胞凋亡过程。结论本研究为铝毒和生物体耐铝机制提供了生物材料。  相似文献   

17.
18.
Cyclic nucleotide gated cation channels (CNGCs) are a large (20 genes in Arabidopsis thaliana) family of plant ligand gated (i.e. cyclic nucleotides activate currents) ion channels, however, little is known about their functional properties. One reason for this is the recalcitrance of plant CNGC expression in heterologous systems amenable to patch clamp studies. Here, we show results demonstrating the efficacy of using growth of a K+ uptake-deficient yeast (trk1,2) as a functional assay of CNGCs as inwardly-conducting cell membrane cation (K+) transporters. Prior work demonstrated that trk1,2 is hypersensitive to the antibiotic hygromycin (hyg) and that expression of an inwardly conducting K+ transporter suppresses hyg hypersensitivity. We find that increasing [hyg] in solid YPD medium inhibits trk1,2 growth around a filter disk saturated with 3 M K+. Northern analysis indicated that message is transcribed in trk1,2 transformed with the CNGC coding sequences. Confocal imaging of yeast expressing CNGC-fluorescent fusion proteins indicated channel targeting to the cell membrane. Trk1,2 expressing several plant CNGCs grown in the presence of hyg demonstrated (a) greater growth than trk1,2 transformed with empty plasmid, and (b) enhanced growth when cAMP was added to the medium. Alternatively, cAMP inhibited growth of yeast transformed with either the empty plasmid, or the plant K+ channel KAT1; this channel is not a CNGC. Growth of trk1,2 was dependent on filter disk [K+]; suggesting that complementation of hyg hypersensitivity due to presence of a functional plant CNGC was dependent on K+ movement into the cytosol. We conclude that plant CNGC functional characterization can be facilitated by this assay system.  相似文献   

19.
20.
Intron lariat formation between the 5' end of an intron and a branchpoint adenosine is a fundamental aspect of the first step in animal and yeast nuclear pre-mRNA splicing. Despite similarities in intron sequence requirements and the components of splicing, differences exist between the splicing of plant and vertebrate introns. The identification of AU-rich sequences as major functional elements in plant introns and the demonstration that a branchpoint consensus sequence was not required for splicing have led to the suggestion that the transition from AU-rich intron to GC-rich exon is a major potential signal by which plant pre-mRNA splice sites are recognized. The role of putative branchpoint sequences as an internal signal in plant intron recognition/definition has been re-examined. Single nucleotide mutations in putative branchpoint adenosines contained within CUNAN sequences in four different plant introns all significantly reduced splicing efficiency. These results provide the most direct evidence to date for preferred branchpoint sequences being required for the efficient splicing of at least some plant introns in addition to the important role played by AU sequences in dicot intron recognition. The observed patterns of 3' splice site selection in the introns studied are consistent with the scanning model described for animal intron 3' splice site selection. It is suggested that, despite the clear importance of AU sequences for plant intron splicing, the fundamental processes of splice site selection and splicing in plants are similar to those in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号