首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the role of sodium ions in methyl beta-thiogalactoside (TMG) transport via the melibiose permease (TMG II) in Salmonella typhimurium. TMG uptake via TMG II in anaerobic, straved and metabolically poisoned cells is dependent on an inward-directed Na+ gradient. Cells which have been partially depleted of endogenous substrates show H+ extrusion upon sodium-stimulated TMG influx. Measurements of the electrochemical H+ gradient in cells, starved in different ways for endogenous substrates, suggest that this proton extrusion is probably not linked to the actual translocation mechanism but is the result of metabolism induced by TMG plug Na+ uptake.  相似文献   

2.
We have studied the role of sodium ions in methyl β-thiogalactoside (TMG) transport via the melibiose permease (TMG II) in SalmonellaTMG uptake via TMG Il in anaerobic, starved and metabolically poisoned cells is dependent on an inward-directed Na+ gradient.Cells which have been partially depleted of endogenous substrates show H+ extrusion upon sodium-stimulated TMG influx.Measurements of the electrochemical H+ gradient in cells, starved in different ways for endogenous substrates, suggest that this proton extrusion is probably not linked to the actual translocation mechanism but is the result of metabolism induced by TMG plus Na+ uptake.  相似文献   

3.
Lactose-grown cells of Bacillus alcalophilus actively transported methylthio-beta, D-galactoside (TMG) in a range of pH values from 7.5 to 10.5 with a pH optimum at 8.5. The TMG was accumulated in a chemically unmodified form, and cell extracts failed to catalyze either ATP or P-enolpyruvate-dependent phosphorylation of TMG. At pH 8.5, the lactose-grown cells exhibited a transmembrane proton gradient (deltapH) of 1.38 units, interior acid, and a transmembrane electrical potential (delta psi) of -132 mV. Accordingly, the total protonmotive force at this pH was very low, -51mV. Several lines of evidence indicate that the protonmotive force or delta psi did not directly energize TMG transport but, rather, that ATP was directly required: (a) in cells treated with arsenate so that the delta psi was unaffected and cellular ATP levels were markedly lowered, TMG transport was inhibited in proportion to the reduction of cellular ATP, while electrogenic alpha-aminoisobutyric acid transport was not; (b) when a valinomycin-induced potassium diffusion potential was established in starved cells, alpha-aminoisobutyric acid transport, but not TMG transport, was stimulated; and (c) in a series of experiments in which the delta psi was rapidly abolished by treatment with gramicidin, ATP levels declined slowly and the rate of TMG transport correlated directly with ATP levels rather than with the delta psi. Consumption of cellular ATP concomitant with TMG transport could be demonstrated.  相似文献   

4.
The involvement of potassium in transepithelial sodium transport was tested by studying net potassium reuptake by potassium-depleted frog skin epidermis. Normal potassium content in half-strength Ringer's (0.244 μequiv/mg dry weight) fell 43% after 16 h in K-free medium at 5°C. Reaccumulation, against an electrochemical potential gradient, to 83% of the initial tissue potassium content occurred following incubation for 4 h at 22°C in K-containing medium. Sodium was required in the solution bathing the inside, but not the outside surface of the skin, for net potassium reaccumulation. Ouabain caused an additional potassium loss from potassium-depleted epidermis, but did not have the same effect on potassium-depleted isolatedcells. Procaine, lithium and caffeine completely inhibited, antidiuretic hormone and cyclic AMP may partially inhibit and amiloride had no effect on potassium reaccumulation. In many cases decreases in sodium and water content were found to occur even in the absence of net potassium reaccumulation. The results suggest (1) potassium is actively transported into the epidermis, (2) this transport is not rigidly coupled to sodium extrusion or water loss, (3) potassium uptake is not rigidly coupled to transepithelial sodium transport, or only a small fraction is involved, (4) potassium diffusion is restricted in the extracellular space.  相似文献   

5.
An artificially produced electrochemical potential difference for protons (portonmotive force) provided the energy for the transport of galactosides in Escherichia coli cells which were depleted of their endogenous energy reserves. The driving force for the entry of protons was provided by either a transmembrane pH gradient or a membrane potential. The pH gradient across the membrane was created by acidifying the external medium. The membrane potential (inside negative) was established by the outward diffusion of potassium (in the presence of valinomycin) or by the inward diffusion of the permeant thiocyanate ion. The magnitude of the electrochemical potential difference for protons agreed well with magnitude of the chemical potential difference of the lactose analog, thiomethylgalactoside. The observations are consistent with the view that the carrier-mediated entry of each galactoside molecule is accompanied by the entry of one proton.  相似文献   

6.
Mechanism of the melibiose porter in membrane vesicles of Escherichia coli   总被引:2,自引:0,他引:2  
D E Cohn  H R Kaback 《Biochemistry》1980,19(18):4237-4243
The melibiose transport system of Escherichia coli catalyzes sodium--methyl 1-thio-beta-D-galactopyranoside (TMG) symport, and the cation is required not only for respiration-driven active transport but also for binding of substrate to the carrier in the absence of energy and for carrier-mediated TMG efflux. As opposed to the proton--beta-galactoside symport system [Kaczorowski, G. J., & Kaback, H. R. (1979) Biochemistry 18, 3691], efflux and exchange of TMG occur at the same rate, implying that the rates of the two processes are limited by a common step, most likely the translocation of substrate across the membrane. Furthermore, the rate of exchange, as well as efflux, is influenced by imposition of a membrane potential (delta psi; interior negative), suggesting that the ternary complex between sodium, TMG, and the porter may bear a net positive charge. Consistently, energization of the vesicles leads to a large increase in the Vmax for TMG influx, with little or no change in the apparent Km of the process. It is proposed that the sodium gradient (Na+out < Na+in) and the delta psi (interior negative) may affect different steps in the overall mechanism of active TMG accumulation in the following manner: the sodium gradient causes an increased affinity for TMG on the outer surface of the membrane relative to the inside and the delta psi facilitates a reaction involved with the translocation of the positively charged ternary complex to the inner surface of the membrane.  相似文献   

7.
In the presence of electrochemical energy, several branched-chain neutral and acidic amino acids were found to accumulate in membrane vesicles of Bacillus stearothermophilus. The membrane vesicles contained a stereo-specific transport system for the acidic amino acids L-glutamate and L-aspartate, which could not translocate their respective amines, L-glutamine and L-asparagine. The transport system was thermostable (Ti = 70 degrees C) and showed highest activities at elevated temperatures (60 to 65 degrees C). The membrane potential or pH gradient could act as the driving force for L-glutamate uptake, which indicated that the transport process of L-glutamate is electrogenic and that protons are involved in the translocation process. The electrogenic character implies that the anionic L-glutamate is cotransported with at least two monovalent cations. To determine the mechanistic stoichiometry of L-glutamate transport and the nature of the cotranslocated cations, the relationship between the components of the proton motive force and the chemical gradient of L-glutamate was investigated at different external pH values in the absence and presence of ionophores. In the presence of either a membrane potential or a pH gradient, the chemical gradient of L-glutamate was equivalent to that specific gradient at different pH values. These results cannot be explained by cotransport of L-glutamate with two protons, assuming thermodynamic equilibrium between the driving force for uptake and the chemical gradient of the substrate. To determine the character of the cotranslocated cations, L-glutamate uptake was monitored with artificial gradients. It was established that either the membrane potential, pH gradient, or chemical gradient of sodium ions could act as the driving force for L-glutamate uptake, which indicated that L-glutamate most likely is cotranslocated in symport with one proton and on sodium ion.  相似文献   

8.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

9.
2-(4-Phenylpiperidino)cyclohexanol (AH-5183) and 2-bromo-alpha-ergocryptine, known inhibitors of the transport of acetylcholine and L-glutamate, respectively, into synaptic vesicles, inhibited the ATP-dependent uptake of dopamine in parallel with the dissipation of the electrochemical gradient of protons in chromaffin granule membrane vesicles. These compounds induced the release of accumulated dopamine from the vesicles. They also inhibited the ATP-dependent formation of the electrochemical gradient of protons in liposomes reconstituted with chromaffin H(+)-ATPase without affecting the activities for ATP hydrolysis, and ATP-dependent uptakes of dopamine, gamma-aminobutyrate, and glutamate into synaptic vesicles. These results indicated that 2-(4-phenylpiperidino)cyclohexanol and 2-bromo-alpha-ergocryptine acted as uncouplers in the secretory vesicles.  相似文献   

10.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

11.
Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2-deoxyglucose and incubated in sodium phosphate buffer were still able to transport serine, and this result indicated that the chemical sodium gradient was capable of driving transport. However, when the deenergized cells were treated with valinomycin and diluted into sodium phosphate to create both an artificial membrane potential and a chemical sodium gradient, rates of serine uptake were fivefold greater than in cells having only a sodium gradient. If deenergized cells were preloaded with sodium (no membrane potential or sodium gradient), there was little serine transport. Nigericin and monensin, ionophores capable of reversing sodium gradients across membranes, strongly inhibited sodium-dependent uptake of the three amino acids. Membrane vesicles loaded with potassium and diluted into either lithium or choline chloride were unable to transport serine, but rapid uptake was evident if sodium chloride was added to the assay mixture. Serine transport had an extremely poor affinity for sodium, and more than 30 mM was needed for half-maximal rates of uptake. Serine transport was inhibited by an excess of threonine, but an excess of alanine had little effect. Results indicated that S. bovis had separate sodium symport systems for serine or threonine and alanine, and either the membrane potential or chemical sodium gradient could drive uptake.  相似文献   

12.
Right-side-out cytoplasmic membrane vesicles from Escherichia coli ML 308-22, a mutant "uncoupled" for beta-galactoside/H+ symport [Wong, P. T. S., Kashket, E. R., & Wilson, T. H. (1970) Proc. Natl. Acad. Sci. U.S.A. 65, 63], are specifically defective in the ability to catalyze accumulation of methyl 1-thio-beta-D-galactopyranoside (TMG) in the presence of an H+ electrochemical gradient (interior negative and alkaline). Furthermore, the rate of carrier-mediated efflux under nonenergized conditions is slow and unaffected by ambient pH from pH 5.5 to 7.5, and TMG-induced H+ influx is only about 15% of that observed in vesicles containing wild-type lac permease (ML 308-225). Alternatively, ML 308-22 vesicles bind p-nitrophenyl alpha-D-galactopyranoside and monoclonal antibody 4B1 to the same extent as ML 308-225 vesicles and catalyze facilitated diffusion and equilibrium exchange as well as ML 308-225 vesicles. When entrance counterflow is studied with external substrate at saturating and subsaturating concentrations, it is apparent that the mutation simulates the effects of deuterium oxide [Viitanen, P., Garcia, M. L., Foster, D. L., Kaczorowski, G. J., & Kaback, H. R. (1983) Biochemistry 22, 2531]. That is, the mutation has no effect on the rate or extent of counterflow when external substrate is saturating but stimulates the efficiency of counterflow when external substrate is below the apparent Km. Moreover, although replacement of protium with deuterium stimulates counterflow in ML 308-225 vesicles when external substrate is subsaturating, the isotope has no effect on the mutant vesicles under the same conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Sodium movement across the luminal membrane of the toad bladder is the rate-limiting step for active transepithelial transport. Recent studies suggest that changes in intracellular sodium regulate the Na permeability of the luminal border, either directly or indirectly via increases in cell calcium induced by the high intracellular sodium. To test these proposals, we measured Na movement across the luminal membrane (th Na influx) and found that it is reduced when intracellular Na is increased by ouabain or by removal of external potassium. Removal of serosal sodium also reduced the influx, suggesting that the Na gradient across the serosal border rather than the cell Na concentration is the critical factor. Because in tissues such as muscle and nerve a steep transmembrane sodium gradient is necessary to maintain low cytosolic calcium, it is possible that a reduction in the sodium gradient in the toad bladder reduces luminal permeability by increasing the cell calcium activity. We found that the inhibition of the influx by ouabain or low serosal Na was prevented, in part, by removal of serosal calcium. To test for the existence of a sodium- calcium exchanger, we studied calcium transport in isolated basolateral membrane vesicles and found that calcium uptake was proportional to the outward directed sodium gradient. Uptake was not the result of a sodium diffusion potential. Calcium efflux from preloaded vesicles was accelerated by an inward directed sodium gradient. Preliminary kinetic analysis showed that the sodium gradient changes the Vmax but not the Km of calcium transport. These results suggest that the effect of intracellular sodium on the luminal sodium permeability is due to changes in intracellular calcium.  相似文献   

14.
《Molecular membrane biology》2013,30(3-4):269-278
Amino acid transport systems for alanine and leucine were reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1mM dithiothreitol, and 0.5 mM EDTA a mixture that solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue-staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valino-mycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

15.
The accompanying articles (Saffen, D.W., Presper, K.A., Doering, T.L., and Roseman, S. (1987) J. Biol. Chem. 262, 16241-16253; Mitchell, W.J., Saffen, D. W., and Roseman, S. (1987) J. Biol. Chem. 262, 16254-16260) show that "inducer exclusion" in intact cells of Escherichia coli is regulated by IIIGlc, a protein encoded by the crr gene of the phosphoenolpyruvate:glycose phosphotransferase system (PTS). The present studies attempt to show a direct effect of IIIGlc on non-PTS transport systems. Inner membrane vesicles prepared from a wild type strain of Salmonella typhimurium (pts+), carrying the E. coli lactose operon on an episome, showed respiration-dependent accumulation of methyl-beta-D-thiogalactopyranoside (TMG) via the lactose permease. In the presence of methyl-alpha-D-glucopyranoside or other PTS sugars, TMG uptake was reduced by an amount which was dependent on the relative concentrations of IIIGlc and lactose permease in the vesicles. The endogenous IIIGlc concentration in these vesicles was in the range 5-10 microM, similar to that found in whole cells. Methyl-alpha-glucoside had no effect on lactose permease activity in vesicles prepared from a deletion mutant strain lacking the soluble PTS proteins Enzyme I, HPr, and IIIGlc. One or more of the pure proteins could be inserted into the mutant vesicles; when one of the two electrophoretically distinguishable forms of the phosphocarrier protein, IIIGlc Slow, was inserted, both the initial rate and steady state level of TMG accumulation were reduced by up to 40%. The second electrophoretic form, IIIGlc Fast, had much less effect. A direct relationship was observed between the intravesicular concentration of IIIGlc Slow and the extent of inhibition of the lactose permease. No inhibition was observed when IIIGlc Slow was added to the outside of the vesicles, indicating that the site of interaction with the lactose permease is accessible only from the inner face of the membrane. In addition to the lactose permease, IIIGlc Slow was found to inhibit both the galactose and the melibiose permeases. Uptake of proline, on the other hand, was unaffected. The results are therefore consistent with an hypothesis that dephosphorylated IIIGlc Slow is an inhibitor of certain non-PTS permeases.  相似文献   

16.
Proton-activated rubidium transport catalyzed by the sodium pump   总被引:1,自引:0,他引:1  
Although the sodium pump normally exchanges three sodium for two potassium ions, experiments with inside-out red cell membrane vesicles show that the stoichiometry is reduced when the cytoplasmic sodium concentration is decreased to less than 1 mM. The present study was designed to gain insight into the question whether other monovalent cations, particularly protons, can act as sodium congeners in effecting pump-mediated potassium transport (ATP-dependent rubidium efflux from inside-out vesicles). The results show that at low cytoplasmic sodium concentration, an increase in proton concentration effects a further reduction in sodium:rubidium stoichiometry, to a value less than the minimal expected (1Na+:3Rb+). Furthermore, when vesicles containing 86RbCl are incubated in nominally sodium-free medium. ATP-dependent net rubidium efflux (normal influx) occurs when the pH is reduced from approximately 7.0 to 6.2 or less. This efflux is inhibited by strophanthidin and vanadate. These experiments support the notion that the sodium pump can operate as an ATP-dependent proton-activated rubidium (potassium) pump without obligatory countertransport of sodium ions.  相似文献   

17.
(Na+ + K+)-ATPase from kidney outer medulla was incorporated into artificial dioleoylphosphatidylcholine vesicles. Transport activity was induced by adding ATP to the external medium. A voltage-sensitive dye was used to detect the ATP-driven potassium extrusion in the presence of valinomycin. The observed substrate-protein interactions of the reconstituted (Na+ + K+)-ATPase largely agree with that from native tissues. An agreement between ATP hydrolysis and transport activity is given for concentration dependences of sodium, potassium, magnesium and calcium ions. The only significant deviations were observed in the influence of pH. Protons were found to have different influence on transport, enzymatic activity and phosphorylation of the enzyme. The transport studies showed a twofold interaction of protons with the protein: competition with sodium at the cytoplasmic ion binding sites, a non competitive inhibition of transport which is not correlated with protein phosphorylation.  相似文献   

18.
It has been shown previously that biogenic amines and a number of pharmaceutical agents can redistribute across vesicle membranes in response to imposed potassium ion or proton gradients. Surprisingly, drug accumulation is observed for vesicles exhibiting either a pH gradient (interior acidic) or a membrane potential (interior negative), implying that these compounds can traverse the lipid bilayer as either the neutral or charged species. This interpretation, however, is complicated by the fact that vesicles exhibiting a membrane potential (interior negative) accumulate protons in response to this potential, thereby creating a pH gradient (interior acidic). This raises the possibility that in both vesicle systems drug redistribution occurs in response to the proton gradient present. We have therefore compared the uptake of several lipophilic cations by reconstituted cytochromec oxidase vesicles and by similar vesicles exhibiting a potassium ion diffusion potential. While turnover of the oxidase generates a membrane potential of comparable magnitude to the potassium ion diffusion system, it is associated with a proton gradient of opposite polarity (interior basic). Both systems show rapid uptake of the permanently charged lipophilic cation, tetraphenylphosphonium, but only the potassium ion diffusion system accumulates the lipophilic amines doxorubicin and propranolol. This provides compelling evidence that such weak bases redistribute only in response to pH gradients and not membrane potential.  相似文献   

19.
Effects of colicins E1 and K on transport systems   总被引:39,自引:14,他引:25       下载免费PDF全文
The effect of colicins E1 and K on active transport of beta-d-galactosides and of alpha-methyl-d-glucoside (alphaMG) by Escherichia coli was studied. These colicins strongly inhibited the accumulation of thio-methyl-galactoside (TMG) by bacteria and caused rapid exit of previously accumulated TMG. The inhibition effect was limited to the accumulation phase of galactoside transport; the rate of hydrolysis of o-nitrophenyl galactoside, which is dependent on transport of the substrate by the lactose-permease system, was only slightly affected. The accumulation of alphaMG was highly resistant to inhibition by these colicins under conditions which caused complete suppression of TMG accumulation. These effects of the colicins on transport resemble qualitatively those of sodium azide. The findings were interpreted by assuming that colicins E1 and K inhibit the energy-dependent steps in the accumulation of TMG but do not affect facilitated diffusion of galactosides mediated by the specific transport mechanism. The continued accumulation of alphaMG was attributed to the fact that this compound is stored by E. coli cells as a phosphorylated compound by a phosphoenolpyruvate-dependent transport system rather than by an adenosine triphosphate-linked accumulation mechanism.  相似文献   

20.
Calcium ions can trigger an emission of light from Veretillum cynomorium lumisomes (bioluminescent vesicles) under conditions where they are not lysed. This process does not require a metabolically-linked source of energy, but is dependent upon the nature of the ions present inside and outside the vesicles. The Ca2+-triggered bioluminescence is stimulated by an asymmetrical distribution of cations or anions. Either high internal sodium or high external chloride is required for the maximal effect. When sodium is present outside the structure and potassium inside, the slow inward diffusion of calcium is decreased. Unbalanced diffusion of internal cations also stimulates the bioluminescence, suggesting control of the calcium influx by an electrochemical gradient. It is assumed that rapid outward diffusion of sodium or inward diffusion of chloride generates an electrical potential difference (inside negative) which drives the Ca2+-influx. With purified lumisomes it has been shown that Ca2+-triggered bioluminescence and calcium uptake (presumably net uptake) were correlated. In two instances uptake of the lipophilic cation dibenzyldimethylammonium has given direct evidence for the existence of a potential difference. With NaCl-loaded vesicles, it has not been possible to demonstrate an uptake of lipophilic cations but experiments with 22Na and 42D indicated a higher rate of sodium efflux, in accord with the proposed hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号