首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous paper, we reported that myeloid differential primary response protein (MyD88), a key adaptor in the signaling cascade of the innate immune response, inhibits hepatitis B virus (HBV) replication. The MyD88 activated nuclear factor-kappaB (NF-kappaB) signaling pathway and the intracellular upregulation of NF-kappaB signaling can induce an antiviral effect. Therefore, the association between the inhibition of HBV replication by MyD88 and NF-kappaB activation was investigated further. The results show that NF-kappaB activation was moderately increased after MyD88 expression. The strong activation of NF-kappaB by the IkappaB kinase complex IKKalpha/IKKbeta dramatically suppressed HBV replication; the MyD88 dominant negative mutant that abrogated NF-kappaB activity did not inhibit HBV replication. Furthermore, the IkappaBalpha dominant negative mutant restored the inhibition of HBV replication by MyD88. These results support a role for NF-kappaB activation in the inhibition of HBV replication and suggest a novel mechanism for the inhibition of HBV replication by MyD88 protein.  相似文献   

2.
目的 研究髓样细胞分化蛋白(MyD88)抗乙型肝炎病毒(HBV)效应的作用机制。方法 构建MyD88的截短突变体,获得核因子kappa B(NF-κB)超抑制剂IkBa-SR或者NF-κB信号通路激活剂IKKα/IKKβ的表达质粒,分别与HBV复制型质粒瞬时转染Huh7细胞,检测细胞上清液中HBeAg,HBsAg的表达以及胞质中HBV复制中间体DNA的含量,并以NF-κB依赖的荧光素酶报道系统检测它们活化NF-κB的程度。结果 MyD88全长蛋白和2个截短突变体M(1-151)、M(151-296)活化NF-κB的程度与其抑制HBV蛋白以及复制中间体DNA合成的能力相一致。与空载相比,表达NF-κB信号通路激活剂IKKα/IKKβ的质粒共同瞬转细胞后,转染MyD88和HBV表达质粒的细胞中NF-κB的通路明显活化,同时HBV core蛋白的合成显著降低;而NF-κB的超抑制剂IκBα-SR共同瞬转的细胞中core蛋白的表达量显著增加,检测细胞培养上清液中HBeAg和HBsAg及胞质中HBV复制中间体DNA的合成,得到相似结果。结论 NF-κB信号通路的活化在MyD88抑制HBV复制中发挥了关键作用  相似文献   

3.
Human CMV (HCMV) retinitis frequently leads to blindness in iatrogenically immunosuppressed patients and in the end stage of AIDS. Despite the general proinflammatory potential of HCMV, virus infection is associated with a rather mild cellular inflammatory response in the retina. To investigate this phenomenon, the influence of HCMV (strains AD169 or Hi91) infection on C-X-C chemokine secretion, ICAM-1 expression, and neutrophil recruitment in cultured human retinal pigment epithelial (RPE) cells was studied. Supernatants from infected cultures contained enhanced levels of IL-8 and melanoma growth-stimulating activity/Gro alpha and induced neutrophil chemotaxis compared with supernatants from uninfected RPE cells. Despite HCMV-induced ICAM-1 expression on RPE cells, binding of activated neutrophils to HCMV-infected RPE cells and subsequent transepithelial penetration were significantly reduced. Reduced neutrophil adhesion to infected RPE cells correlated with HCMV-induced up-regulation of constitutive Fas ligand (FasL) expression. Functional blocking of FasL on RPE cells with the neutralizing mAbs NOK-1 and NOK-2 or of the Fas receptor on neutrophils with mAbB-D29 prevented the HCMV-induced impairment of neutrophil/RPE interactions. Fas-FasL-dependent impairment of neutrophil binding had occurred by 10 min after neutrophil/RPE coculture without apoptotic signs. Neutrophil apoptosis was first detected after 4 h. Treatment of neutrophils with a specific inhibitor of caspase-8 suppressed apoptosis, whereas it did not prevent impaired neutrophil binding to infected RPE. The current results suggest a novel role for FasL in the RPE regulation of neutrophil binding. This may be an important feature of virus escape mechanisms and for sustaining the immune-privileged character of the retina during HCMV ocular infection.  相似文献   

4.
The innate immune system evolved to recognize conserved microbial products, termed pathogen-associated molecular patterns (PAMPs), which are invariant among diverse groups of microorganisms. PAMPs are recognized by a set of germ-line encoded pattern recognition receptors (PRRs). Among the best characterized PAMPs are bacterial lipopolysaccharide (LPS), peptidoglycan (PGN), mannans, and other constituents of bacterial and fungal cell walls, as well as bacterial DNA. Recognition of bacterial DNA is the most enigmatic of these, as it depends on a particular sequence motif, called the CpG motif, in which an unmethylated CpG present in a particular sequence context accounts for a potent immunostimulatory activity of CpG DNA. Receptor(s) of the innate immune system that mediate recognition of CpG DNA are currently unknown. Here, we report that recognition of CpG DNA requires MyD88, an adaptor protein involved in signal transduction by the Toll-like receptors (TLRs), essential components of innate immune recognition in both Drosophila and mammals [1,2]. Signaling induced by CpG DNA was found to be unaffected in cells deficient in TLR2 or TLR4, suggesting that some other member of the Toll family mediates recognition of bacterial DNA.  相似文献   

5.
6.
In this report, the susceptibility of type VIII collagen to human neutrophil elastase is compared to other extracellular matrix components. Type X collagen is degraded to specific fragments at a substrate to enzyme ratio of 5:1 after 20 h at room temperature, but type VIII collagen is almost completely degraded after only 4 h incubation at a substrate to enzyme ratio of 50:1 and partly degraded after only 15 min. Laminin, merosin and types I, III, IV and V collagen exhibit no susceptibility to neutrophil elastase under the latter conditions, while fibronectin is degraded.  相似文献   

7.
Immune activation is a major characteristic of human immunodeficiency virus type 1 (HIV-1) infection and a strong prognostic factor for HIV-1 disease progression. The underlying mechanisms leading to immune activation in viremic HIV-1 infection, however, are not fully understood. Here we show that, following the initiation of highly active antiretroviral therapy, the immediate decline of immune activation is closely associated with the reduction of HIV-1 viremia, which suggests a direct contribution of HIV-1 itself to immune activation. To propose a mechanism, we demonstrate that the single-stranded RNA of HIV-1 encodes multiple uridine-rich Toll-like receptor 7/8 (TLR7/8) ligands that induce strong MyD88-dependent plasmacytoid dendritic cell and monocyte activation, as well as accessory cell-dependent T-cell activation. HIV-1-encoded TLR ligands may, therefore, directly contribute to the immune activation observed during viremic HIV-1 infection. These data provide an initial rationale for inhibiting the TLR pathway to directly reduce the chronic immune activation induced by HIV-1 and the associated immune pathogenesis.  相似文献   

8.
The effect of the neutrophil-activating peptide NAP-1/IL-8 on the expression of complement receptor type 1 (CR1) in human neutrophils was studied. NAP-1/IL-8 enhanced CR1 expression at concentrations between 10(-10) and 10(-8) M. The maximum increase with respect to unstimulated control cells was on average 2.3 fold. The effect was rapid: Half-maximum enhancement was obtained in 4 min and the plateau was reached in 15 min. The chemotactic peptide fMLP, tested for comparison, was effective between 10(-9) and 10(-7) M, showed a similar time course and a somewhat higher maximum effect (2.8 fold increase). The effect of NAP-1/IL-8 was prevented by pretreatment of the cells with B.pertussis toxin and desensitization was observed following restimulation. Stimulus combination experiments suggested that NAP-1/IL-8 mobilizes the same or a similar intracellular pool of CR1 receptors as fMLP or C5a.  相似文献   

9.
10.
Proteinase inhibitor PI9 (PI9) is an intracellular 42-kDa member of the ovalbumin family of serpins that is found primarily in placenta, lung and lymphocytes. PI9 has been shown to be a fast-acting inhibitor of granzyme B in vitro, presumably through the utilization of Glu(340) as the P(1) inhibitory residue in its reactive site loop. In this report, we describe the inhibition of human neutrophil elastase by recombinant human PI9. Inhibition occurred with an overall K(i)' of 221 pM and a second-order association rate constant of 1.5 x 10(5) M(-1) s(-1), indicating that PI9 is a potent inhibitor of this serine proteinase in vitro. In addition, incubation of recombinant PI9 with native neutrophil elastase resulted in the formation of an SDS-resistant 62-kDa complex. Amino-terminal sequence analyses provided evidence that inhibition of elastase occurred through the use of Cys(342) as the reactive P(1) amino acid residue in the PI9 reactive site loop. Thus, PI9 joins its close relatives PI6 and PI8 as having the ability to utilize multiple reactive site loop residues as the inhibitory P(1) residue to expand its inhibitory spectrum.  相似文献   

11.
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium are classified as attaching and effacing pathogens based on their ability to adhere to intestinal epithelium via actin-filled membranous protrusions (pedestals). Infection of mice with C. rodentium causes breach of the colonic epithelial barrier, a vigorous Th1 inflammatory response, and colitis. Ultimately, an adaptive immune response leads to clearance of the bacteria. Whereas much is known about the adaptive response to C. rodentium, the role of the innate immune response remains unclear. In this study, we demonstrate for the first time that the TLR adaptor MyD88 is essential for survival and optimal immunity following infection. MyD88(-/-) mice suffer from bacteremia, gangrenous mucosal necrosis, severe colitis, and death following infection. Although an adaptive response occurs, MyD88-dependent signaling is necessary for efficient clearance of the pathogen. Based on reciprocal bone marrow transplants in conjunction with assessment of intestinal mucosal pathology, repair, and cytokine production, our findings suggest a model in which TLR signaling in hemopoietic and nonhemopoietic cells mediate three distinct processes: 1) induction of an epithelial repair response that maintains the protective barrier and limits access of bacteria to the lamina propria; 2) production of KC or other chemokines that attract neutrophils and thus facilitate killing of bacteria; and 3) efficient activation of an adaptive response that facilitates Ab-mediated clearance of the infection. Taken together, these experiments provide evidence for a protective role of innate immune signaling in infections caused by attaching and effacing pathogens.  相似文献   

12.
Cystic fibrosis (CF) is a lethal, hereditary disorder characterized by a neutrophil-dominated inflammation of the lung. We sought to determine whether neutrophils from individuals with CF release more neutrophil elastase (NE) than neutrophils from normal subjects. Our results showed that peripheral blood neutrophils (PBNs) from normal subjects and individuals with CF contained similar amounts of NE, but after preincubation with CF bronchoalveolar lavage (BAL) fluid, significantly more NE was released by CF PBNs, a release that was amplified further by incubation with opsonized Escherichia coli. To determine which components of CF BAL fluid stimulated this excessive NE release from CF PBNs, we repeated the experiments after neutralization or immunoprecipitation of tumor necrosis factor (TNF)-alpha and interleukin (IL)-8 in CF BAL fluid. We found that subsequent NE release from CF PBNs was reduced significantly when TNF-alpha and IL-8 were removed from CF BAL fluid. When TNF-alpha and IL-8 were used as activating stimuli, CF PBNs released significantly greater amounts of NE compared with PBNs from control subjects and individuals with bronchiectasis. These results indicate that CF PBNs respond abnormally to TNF-alpha and IL-8 in CF BAL fluid and react to opsonized bacteria by releasing more NE. This may help explain the increased NE burden seen in this condition.  相似文献   

13.
We have examined the involvement of components of the interleukin-1 (IL-1) signaling pathway in the transactivation of gene expression by the p65 subunit of NF-kappaB. Transient transfection of cells with plasmids encoding wild-type MyD88, IL-1 receptor-associated kinase 1 (IRAK-1), and TRAF-6 drove p65-mediated transactivation. In addition, dominant negative forms of MyD88, IRAK-1, and TRAF-6 inhibited the IL-1-induced response. In cells lacking MyD88 or IRAK-1, no effect of IL-1 was observed. Together, these results indicate that MyD88, IRAK-1, and TRAF-6 are important downstream regulators of IL-1-mediated p65 transactivation. We have previously shown that the low-molecular-weight G protein Rac1 is involved in this response. Constitutively active RacV12-mediated transactivation was not inhibited by dominant negative MyD88, while dominant negative RacN17 inhibited the MyD88-driven response, placing Rac1 downstream of MyD88 on this pathway. Dominant negative RacN17 inhibited wild-type IRAK-1- and TRAF-6-induced transactivation, and in turn, dominant negative IRAK-1 and TRAF-6 inhibited the RacV12-driven response, suggesting a mutual codependence of Rac1, IRAK-1, and TRAF-6 in regulating this pathway. Finally, Rac1 was found to associate with the receptor complex via interactions with both MyD88 and the IL-1 receptor accessory protein. A pathway emanating from MyD88 and involving IRAK-1, TRAF-6, and Rac1 is therefore involved in transactivation of gene expression by the p65 subunit of NF-kappaB in response to IL-1.  相似文献   

14.
Protein C degradation in vitro by neutrophil elastase.   总被引:4,自引:0,他引:4  
Purified protein C is completely degraded into small peptides by in vitro incubation with purified elastase. Protein C is a rather sensitive substrate as degradation is already accomplished by low elastase concentrations (molar enzyme-to-substrate ratio 1:510) and short incubation periods (5 min-60 min). Protein C in a PPSB coagulation factor concentrate is equally degraded and similar split products are detected by blotting techniques. The protein C activity (measured by a chromogenic substrate) is faster reduced by elastase than the protein C concentration (measured by an ELISA). Incubation of normal plasma with high elastase concentrations (5.7 nmol/ml plasma) results in reduction of the protein C band while no split products are detectable. The pathophysiologic significance of the effects of elastase on protein C remains to be elucidated.  相似文献   

15.
16.
Human neutrophil elastase catalyzes the inactivation of antithrombin by a specific and limited proteinolytic cleavage. This inactivation reaction is greatly accelerated by an active anticoagulant heparin subfraction with high binding affinity for antithrombin. A potentially complex reaction mechanism is suggested by the binding of both neutrophil elastase and antithrombin to heparin. The in vitro kinetic behavior of this system was examined under two different conditions: 1) at a constant antithrombin concentration in which the active anticoagulant heparin was varied from catalytic to saturating levels; and 2) at a fixed, saturating heparin concentration and variable antithrombin levels. Under conditions of excess heparin, the inactivation could be continuously monitored by a decrease in the ultraviolet fluorescence emission of the inhibitor. A Km of approximately 1 microM for the heparin-antithrombin complex and a turnover number of approximately 200/min was estimated from these analyses. Maximum acceleratory effects of heparin on the inactivation of antithrombin occur at heparin concentrations significantly lower than those required to saturate antithrombin. The divergence in acceleratory effect and antithrombin binding contrasts with the anticoagulant functioning of heparin in promoting the formation of covalent antithrombin-enzyme complexes and is likely to derive from the fact that neutrophil elastase is not consumed in the inactivation reaction. A size dependence was observed for the heparin effect since an anticoagulantly active octasaccharide fragment of heparin, with avid antithrombin binding activity, was without effect on the inactivation of antithrombin by neutrophil elastase. Despite the completely nonfunctional nature of elastase-cleaved antithrombin and the altered physical properties of the inhibitor as indicated by fluorescence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the inactivated inhibitor exhibited a circulating half-life in rabbits that was indistinguishable from native antithrombin. These results point to an unexpected and apparently contradictory function for heparin which may relate to the properties of the vascular endothelium in pathological situations.  相似文献   

17.
Janus kinase 3 (JAK3) is a non-receptor tyrosine kinase vital to the regulation of T-cells. We report that JAK3 is a mediator of interleukin-8 (IL-8) stimulation of a different class of hematopoietic relevant cells: human neutrophils. IL-8 induced a time- and concentration-dependent activation of JAK3 activity in neutrophils and differentiated HL-60 leukemic cells. JAK3 was more robustly activated by IL-8 than other kinases: p70S6K, mTOR, MAPK or PKC. JAK3 silencing severely inhibited IL-8-mediated chemotaxis. Thus, IL-8 stimulates chemotaxis through a mechanism mediated by JAK3. Further, JAK3 activity and chemotaxis were inhibited by the flavonoid apigenin (4′,5,7-trihydroxyflavone) at ∼5 nM IC50. These new findings lay the basis for understanding the molecular mechanism of cell migration as it relates to neutrophil-mediated chronic inflammatory processes.  相似文献   

18.
Activated polymorphonuclear leukocytes (PMNs) release various types of proteases and express them on the cell surface. The proteases play important roles in PMN-mediated events. In the present study, flow cytometric analysis revealed that CD14 expression on human gingival fibroblasts (HGF) was markedly reduced by PMA-activated PMNs in a coculture system. We found that this reduction was caused by both secreted and cell surface proteases produced by activated PMNs. A protease responsible for the reduction was found to be human leukocyte elastase (HLE) secreted from the activated PMNs by use of various protease inhibitors, although HLE was only partially involved in CD14 reduction caused by cell-bound molecule(s) on fixed PMNs. Analysis with purified HLE revealed a time- and dose-dependent reduction of CD14 on HGF, and complete reduction was observed by 20 microg/ml HLE treatment for 30-60 min, but the other molecules such as CD26, CD59, CD157, and MHC class I on HGF were only slightly reduced. This reduction of CD14 resulted from direct proteolysis by HLE on the cell surface, because HLE reduced CD14 on fixed HGF and also on purified cell membranes. As a result of CD14 proteolysis, IL-8 production by HGF was suppressed when triggered by 10 ng/ml LPS, but not by IL-1alpha, indicating that HLE inhibited a CD14-dependent cell activation. These findings suggested that activated PMNs have a potential negative feedback mechanism for HGF function at the inflammatory site, particularly in periodontal tissues.  相似文献   

19.
Helicobacter pylori induces NF-kappaB activation, leading to mucosal inflammation via cag pathogenicity island. Although recent studies have implicated several candidate proteins of both H. pylori and host, the molecular mechanism by which H. pylori activates NF-kappaB remains unclear. The aim of this study was to analyze the mechanism of cag pathogenicity island-mediated NF-kappaB activation in epithelial cells. The responses of human cell lines and mouse embryonic fibroblasts to infection with wild-type H. pylori or cagE mutant were investigated. The effect of small interfering RNAs (siRNAs) for several NF-kappaB signaling intermediate molecules was evaluated in H. pylori-induced IkappaBalpha phosphorylation and IL-8 production. Protein interactions of exogenously expressed TNFR-associated factor 6 (TRAF6) and MyD88 or receptor-interacting protein 2 and nucleotide-binding oligomerization domain 1 or those of endogenous IkappaB kinase, TGF-beta-activated kinase 1 (TAK1), and TRAF6 were assessed by immunoprecipitation. Cag pathogenicity island-dependent NF-kappaB activation was observed in human cell lines, but not in mouse fibroblasts. In human epithelial cells, H. pylori-induced IkappaBalpha phosphorylation and IL-8 production were severely inhibited by siRNAs directed against TAK1, TRAF6, and MyD88. In contrast, siRNAs for TRAF2, IL-1R-associated kinases 1 and 4, and cell surface receptor proteins did not affect these responses. H. pylori infection greatly enhanced MyD88 and TRAF6 complex formation in a cag-dependent manner, but did not enhance Nod1 and receptor-interacting protein 2 complex formation. H. pylori also induced TAK1 and TRAF6 complexes. These results suggest that the cag pathogenicity island of H. pylori is a cell type-specific NF-kappaB activator. TAK1, TRAF6, and MyD88 are important signal transducers in H. pylori-infected human epithelial cells.  相似文献   

20.
MyD88 KO (knockout) mice are exquisitely sensitive to CNS (central nervous system) infection with Staphylococcus aureus, a common aetiological agent of brain abscess, exhibiting global defects in innate immunity and exacerbated tissue damage. However, since brain abscesses are typified by the involvement of both activated CNS-resident and infiltrating immune cells, in our previous studies it has been impossible to determine the relative contribution of MyD88-dependent signalling in the CNS compared with the peripheral immune cell compartments. In the present study we addressed this by examining the course of S. aureus infection in MyD88 bone marrow chimaera mice. Interestingly, chimaeras where MyD88 was present in the CNS, but not bone marrow-derived cells, mounted pro-inflammatory mediator expression profiles and neutrophil recruitment equivalent to or exceeding that detected in WT (wild-type) mice. These results implicate CNS MyD88 as essential in eliciting the initial wave of inflammation during the acute response to parenchymal infection. Microarray analysis of infected MyD88 KO compared with WT mice revealed a preponderance of differentially regulated genes involved in apoptotic pathways, suggesting that the extensive tissue damage characteristic of brain abscesses from MyD88 KO mice could result from dysregulated apoptosis. Collectively, the findings of the present study highlight a novel mechanism for CNS-resident cells in initiating a protective innate immune response in the infected brain and, in the absence of MyD88 in this compartment, immunity is compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号