首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
Azotobacter vinelandii growing on galactosides induced two distinct permeases for glucose and galactose. The apparent Vmax and Km of the galactose permease were 16 nmol galactose/min per 10(10) cells and 0.5 mM, respectively. The apparent Vmax and Km of the glucose permease were 7.8 nmol glucose/min per 10(10) cells and 0.04 mM, respectively. Excess glucose had no effect on the galactose uptake. However, excess galactose inhibited glucose transport. The galactosides-induced glucose permease also exhibited different uptake kinetics from that induced by glucose.  相似文献   

2.
The changes in glycogen content and in its rate of synthesis in two-day-old primary cultures of rat hepatocytes were assessed under various conditions. Hepatocytes cultivated in serum-free and hormone-free medium switch from glycogen degradation to glycogen deposition at 10.3 mM glucose. After pretreatment of the cells with glucocorticoids this threshold was reduced, in the absence or presence of insulin, to 5.4 or 1.2 mM glucose, respectively. The rate of glycogen synthesis in the presence of 10 mM glucose was amplified from 5 nmol x h-1 x mg protein-1 to 20 nmol glucose x h-1 x mg protein-1 after pretreatment with triamcinolone. Glucagon pretreatment also significantly increased the subsequent glycogen synthesis rate. Insulin addition accelerated glycogen synthesis about twofold regardless of the pretreatment. The dose-response relationship between insulin concentration and glycogen synthesis rate showed half-maximal effect at 0.62 +/- 0.22 nM (mean +/- S.D.) insulin. Pretreatment of hepatocytes with glucocorticoids, glucagon, insulin or combinations of these hormones did not significantly change the concentration which gives the half-maximal effect.  相似文献   

3.
To examine which branched-chain amino acids affect the plasma glucose levels, we investigated the effects of leucine, isoleucine, and valine (0.3 g/kg body weight p.o.) in normal rats using the oral glucose tolerance test (OGTT, 2 g/kg). A single oral administration of isoleucine significantly reduced plasma glucose levels 30 and 60 min after the glucose bolus, whereas administration of leucine and valine did not produce a significant decrease. Oral administration of valine significantly enhanced the plasma glucose level at 30 min after the glucose administration and leucine had a similar effect at 120 min. At each measurement timepoint, the insulin levels of the treated groups were lower than that of the control group. We then investigated the effects of leucine, isoleucine or valine at the same concentration (1 mM) on glucose metabolism in C(2)C(12) myotubes in the absence of insulin. Glucose consumption was elevated by 16.8% in the presence of 1 mM isoleucine compared with the control. Conversely, 1 mM leucine or valine caused no significant changes in glucose consumption in the C(2)C(12) myotubes. The 2-deoxyglucose uptake of C(2)C(12) myotubes significantly increased upon exposure to 1-10 mM isoleucine and 5-10 mM leucine. However, isoleucine caused no significant difference in glycogen synthesis in C(2)C(12) myotubes, although leucine and valine caused a significant increase in intracellular glycogen compared with the control. The isoleucine effect on glucose uptake was mediated by phosphatidylinositol 3-kinase (PI3K), but was independent of mammalian target of rapamycin (mTOR). These results suggest that isoleucine stimulates the insulin-independent glucose uptake in skeletal muscle cells, which may contribute to the plasma glucose-lowering effect of isoleucine in normal rats.  相似文献   

4.
Glycogen synthesis by rat hepatocytes.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Katz  S Golden    P A Wals 《The Biochemical journal》1979,180(2):389-402
1. Hepatocytes from starved rats or fed rats whose glycogen content was previously depleted by phlorrhizin or by glucagon injections, form glycogen at rapid rates when incubated with 10mM-glucose, gluconeogenic precursors (lactate, glycerol, fructose etc.) and glutamine. There is a net synthesis of glucose and glycogen. 14C from all three types of substrate is incorporated into glycogen, but the incorporation from glucose represents exchange of carbon atoms, rather than net incorporation. 14C incorporation does not serve to measure net glycogen synthesis from any one substrate. 2. With glucose as sole substrate net glucose uptake and glycogen deposition commences at concentrations of about 12--15mM. Glycogen synthesis increases with glucose concentrations attaining maximal values at 50--60mM, when it is similar to that obtained in the presence of 10mM glucose and lactate plus glutamine. 3. The activities of the active (a) and total (a+b) forms of glycogen synthase and phosphorylase were monitored concomitant with glycogen synthesis. Total synthase was not constant during a 1 h incubation period. Total and active synthase activity increased in parallel with glycogen synthesis. 4. Glycogen phosphorylase was assayed in two directions, by conversion of glycose 1-phosphate into glycogen and by the phosphorylation of glycogen. Total phosphorylase was assyed in the presence of AMP or after conversion into the phosphorylated form by phosphorylase kinase. Results obtained by the various methods were compared. Although the rates measured by the procedures differ, the pattern of change during incubation was much the same. Total phosphorylase was not constant. 5. The amounts of active and total phosphorylase were highest in the washed cell pellet. Incubation in an oxygenated medium, with or without substrates, caused a prompt and pronounced decline in the assayed amounts of active and total enzyme. There was no correlation between phosphorylase activity and glycogen synthesis from gluconeogenic substrates. With fructose, active and total phosphorylase activities increased during glycogen syntheses. 6. In glycogen synthesis from glucose as sole substrate there was a decline in phosphorylase activities with increased glucose concentration and increased rates of glycogen deposition. The decrease was marked in cells from fed rats. 7. To determine whether phosphorolysis and glycogen synthesis occur concurrently, glycogen was prelabelled with [2-3H,1-14C]-galactose. During subsequent glycogen deposition there was no loss of activity from glycogen in spite of high amounts of assayable active phosphorylase.  相似文献   

5.
Ferricyanide was reduced to ferrocyanide by the perfused rat heart at a linear rate of 78 nmol/min per g of heart (non-recirculating mode). Ferricyanide was not taken up by the heart and ferrocyanide oxidation was minimal (3 nmol/min per g of heart). Perfusate samples from hearts perfused without ferricyanide did not reduce ferricyanide. A single high-affinity site (apparent Km=22 μM) appeared to be responsible for the reduction. Perfusion of the heart with physiological medium containing 0.5 mM ferricyanide did not alter contractility, biochemical parameters or energy status of the heart. Perfusate flow rate and perfusate oxygen concentration exerted opposing effects on the rate of ferricyanide reduction. A net decreased reduction rate resulted from a decreased perfusion flow rate. Thus, the rate of supply of ferricyanide dominated over the stimulatory effect of oxygen restriction; the latter effect only becoming apparent when the oxygen concentration was lowered at a high perfusate flow rate. Whereas glucose (5 mM) increased the rate of ferricyanide reduction, pyruvate (2 mM), acetate (2 mM), lactate (2 mM) and 3-hydroxybutyrate (2 mM) each had no effect. Insulin (3 nM), glucagon (0.5 μM), dibutyryl cyclic AMP (0.1 mM) and the β-adrenergic agonist ritodrine (10 μM) also had no effect, however the α1-adrenergic agonist, methoxamine (10 μM), produced a net increase in the rate of ferricyanide reduction. It is concluded that a trans-plasma membrane electron efflux occurs in perfused rat heart that is sensitive to oxygen supply, glucose, perfusion flow rate, and the α-adrenergic agonist methoxamine.  相似文献   

6.
The isolated segmental ganglia of the horse leech Haemopis sanguisuga were used as a model system to study the utilization and control of glycogen stores within nervous tissue. The glycogen in the ganglia was extracted and assayed fluorimentrically and its cellular localization and turnover studied by autoradiography in conjunction with [3H]glucose. We measured the glycogen after various periods of electrical stimulation and after incubation with K+, Ca2+, ouabain and glucose. The results for each experimental ganglion were compared to a paired control ganglion and the results analysed by paired t-tests. Electrical stimulation caused sequential changes in glycogen levels: a reduction of up to 67% (5–10 min); followed by an increase of up to 124% (between 15–50 min); followed by a reduction of up to 63% (60–90 min). Values were calculated for glucose utilization (e.g. 0.53 μmol glucose/gm wet weight/min after 90 min) and estimates derived for glucose consumption per action potential per neuron (e.g. 0.12 fmol at 90 min). Glucose (1.5–10 mM) increased the amount of glycogen (1.5 mM by 30% at 60 min) and attenuated the effects of electrical stimulation. Ouabain (1 mM) blocked the effect of 5 min electrical stimulation. Nine millimolar K+ increased glycogen by 27% after 10 min and decreased glycogen by 34% after 60 min; 3 mM Ca2+ had no effect after 10 or 20 min and decreased glycogen by 29% after 60 min. Other concentrations of K+ and Ca2+ reduced glycogen after 60 min. Autoradiographic analysis demonstrated that the effects of elevated K+ were principally within the glial cells. We conclude that (i) the glycogen stores in the glial cells of leech segmental ganglia provide an endogenous energy source which can support sustained neuronal activity, (ii) both electrical stimulation and elevated K+ can induce gluconeogenesis within the ganglia, (iii) that electrical activation of neurons produces changes in the glycogen in the glial cells which are controlled in part by changes in K+.  相似文献   

7.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   

8.
Synergism of glucose and fructose in net glycogen synthesis was studied in perfused livers from 24-h fasted rats. With either glucose or fructose alone, net glycogen deposition did not occur (p greater than 0.10 for each), whereas the addition of both together resulted in significant glycogen accumulation (net glycogen accumulation was 0.21 +/- 0.03 mumol of glucose/g of liver/min at 2 mM fructose and 30 mM glucose, p less than 0.001). To better understand this synergism, intermediary substrate levels were compared at steady state with various glucose levels in the absence and in the presence of 2 mM fructose. Independent of fructose, hepatic glucose and glucose 6-phosphate increased proportionally when glucose level in the medium was raised (r = 0.86, p less than 0.001). Unlike glucose 6-phosphate, UDP-glucose did not consistently increase with glucose (p greater than 0.10); in fact, there was a small decrease at a very high glucose level (30 mM), a result consistent with the well-established activation of glycogen synthase by glucose. With elevated glucose, the level of glucose 6-phosphate was strongly correlated with glycogen content (r = 0.71, p less than 0.01, slope = 32). Adding fructose increased the "efficiency" of glucose 6-phosphate to glycogen conversion: the effect of a given increment in glucose 6-phosphate upon glycogen accumulation was increased 2.6-fold (r = 0.73, p less than 0.01, slope = 86). A kinetic modeling approach was used to investigate the mechanisms by which fructose synergized glycogen accumulation when glucose was elevated. Based on steady-state hepatic substrate levels, net hepatic glucose output, and net glycogen synthesis rate, the model estimated the rate constants of major enzymes and individual fluxes in the glycogen metabolic pathway. Modeling analysis is consistent with the following scenario: glycogen synthase is activated by glucose, whereas glucose-6-phosphatase was inhibited. In addition, the model supports the hypothesis that fructose synergizes net glycogen accumulation due to suppression of phosphorylase. Overall, our analysis suggests that glucose enhances the metabolic flux to glycogen by inducing a build up of glucose 6-phosphate via combined effects of mass action and glucose-6-phosphatase inhibition and activating glycogen synthase and that fructose enhances glycogen accumulation by retaining glycogen via phosphorylase inhibition.  相似文献   

9.
13C NMR studies of glycogen turnover in the perfused rat liver   总被引:5,自引:0,他引:5  
To assess whether hepatic glycogen is actively turning over under conditions which promote net glycogen synthesis we perfused livers from 24-h fasted rats with 20 mM D-[1-13C]glucose, 10 mM L-[3-13C]alanine, 10 mM L-[3-13C]lactate, and 1 microM insulin for 90 min followed by a 75-min "chase" period with perfusate of the same composition containing either 13C-enriched or unlabeled substrates. The peak height of the C-1 resonance of the glucosyl subunits in glycogen was monitored, in real time, using 13C NMR techniques. During the initial 90 min the peak height of the C-1 resonance of glycogen increased at almost a constant rate reflecting a near linear increase in net glycogen synthesis, which persisted for a further 75 min if 13C-enriched substrates were present during the "chase" period. However, when the perfusate was switched to the unenriched substrates, the peak height of the C-1 resonance of glycogen declined in a nearly linear manner reflecting active glycogenolysis during a time of net glycogen synthesis. By comparing the slopes of the curve describing the time course of the net [1-13C] glucose incorporation into glycogen with the rate of net loss of 13C label from the C-1 resonance of glycogen during the "chase" period we estimated the relative rate of glycogen breakdown to be 60% of the net glycogen synthetic rate. Whether this same phenomenon occurs to such an appreciable extent in vivo remains to be determined.  相似文献   

10.
Glycogen synthesis from various combinations of substrates by hepatocytes isolated from rats fasted 24 h was studied. As reported by Katz et al. (Katz, J., Golden, S., and Wals, P. A. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3433-3437), appreciable rates of glycogen synthesis occurred only in the presence of gluconeogenic precursors and one of several amino acids, which includes L-glutamine. L-Leucine had negligible effects on glycogen synthesis from 20 mM dihydroxyacetone and/or 15 mM glucose when L-glutamine was not added to the medium. In the presence of 10 mM L-glutamine, L-leucine greatly increased glycogen synthesis from these substrates. alpha-Ketoisocaproate was ineffective, as was oleate. NH4Cl depressed glycogen synthesis from 10 mM glucose plus 20 mM dihydroxyacetone in the absence of added L-glutamine and enhanced that in its presence, but these effects were weak compared to those of L-leucine. The amino acid analogues L-norvaline and L-norleucine exerted effects that were similar to those exerted by L-leucine. Under all conditions studied, cycloheximide and puromycin inhibited net glycogen synthesis. Cycloheximide did not stimulate gluconeogenesis from dihydroxyacetone, or phosphorylase in hepatocytes from starved rats, or glycogenolysis in hepatocytes from fed rats. Puromycin, however, stimulated glycogenolysis in hepatocytes from fed rats. Glycogen synthesis from 20 mM dihydroxyacetone proceeds with a pronounced initial lag phase that can be shortened by incubation of cells with glutamine plus leucine before addition of dihydroxyacetone. Concurrent measurements of glycogen synthesis, glycogen synthase, and gluconeogenesis under different conditions reveal that in addition to protein synthesis, activation of glycogen synthase, which must occur to allow glycogen synthesis in hepatocytes, requires a second component which can be satisfied by addition of dihydroxyacetone or fructose to the cells.  相似文献   

11.
Astrocyte-enriched and meningeal cell cultures of the rat cerebral cortex were prepared, and their glycogen content was measured after 10-90 min under control (2.5 mM) concentrations of potassium after prefeeding with 20 mM glucose. No net change in glycogen level was noted in either culture over this period. Cell cultures were then exposed to increased concentrations of potassium (5, 10, and 15 mM), and their glycogen content was measured after 10-90 min. Both types of cell culture showed complex and variable changes in glycogen content. In general, increased potassium concentrations caused astrocyte glycogen stores to be reduced at physiological increases of potassium levels (from 2.5 to 5 mM and above), although a period of resynthesis was evident at all potassium concentrations. Meningeal cell glycogen levels were highly variable and only affected by high (10 and 15 mM) levels of potassium. These results are discussed with respect to the theory that changes in the external potassium concentration caused by neuronal activity might act as a signal controlling astrocyte glycogen stores.  相似文献   

12.
Transport results from in vitro studies may not be applicable to in vivo situations. In this study, we extended our previous in vitro observations regarding the intestinal transport of 5-methyltetrahydrofolate to in vivo studies in the unanesthetized rat and examined the effect of the unstirred water layer on the absorption process. We used a well defined intestinal perfusion technique. Absorption of 0.5 and 5 microM 5-methyltetrahydrofolate proceeded in a linear manner for 40 min of perfusion at 0.31 and 1.74 nmol/100 cm per min, respectively. Absorption of 0.5 microM 5-methyltetrahydrofolate increased with increasing perfusate flow-rate from 0.5 to 2 to 4 ml/min, indicating an unstirred water layer influence on the absorption rate. Absorption of the substrate was saturable with an apparent Kt of 5.7 microM and Vmax of 3.45 nmol/100 cm per min. Absorption was pH-dependent, and was inhibited by structural analogues. In contrast to the in vitro data, addition of glucose (20 mM) to the perfusate was unnecessary for in vivo absorption to proceed. Unconjugated cholic (5 mM) and deoxycholic (1 mM) acids and the organic anion rose bengal (0.1 mM) inhibited the absorption of 0.5 microM 5-methyltetrahydrofolate when added to the perfusate. Conclusions: the results of previous in vitro studies of 5-methyltetrahydrofolate intestinal transport are applicable to in vivo situations, except that luminal glucose was found to be unnecessary in the latter. The unstirred water layer modulated the absorption of 5-methyltetrahydrofolate, while unconjugated bile acids and rose bengal inhibited it.  相似文献   

13.
Zhang Y  Courtois P  Sener A  Malaisse WJ 《Biochimie》2004,86(12):913-918
The anomeric specificity of D-[U-14C]glucose incorporation into glycogen in rat hemidiaphragms was investigated. For this purpose, the hemidiaphragms were preincubated for 30 min at 37 degrees C and then incubated for 5 min at the same temperature in the presence of alpha- or beta-D-[U-14C]glucose. The concentrations of D-glucose (5.6 or 8.8 mM) and insulin (0 or 10 mU/ml) were identical during the preincubation and incubation periods. The incubation medium was prepared in D2O/H2O (3:1, v/v) in order to delay the interconversion of the D-glucose anomers. In addition to glycogen labelling, the output of radioactive acidic metabolites was also measured. Insulin caused a preferential stimulation of glycogen labelling relative to glycolysis. Such was not the case in response to a rise in D-glucose concentration. At 5.6 mM D-glucose and whether in the presence or absence of insulin, both glycogen labelling and glycolysis were lower with alpha-D-glucose than with beta-D-glucose suggesting a higher rate of beta-D-glucose than alpha-D-glucose transport across the plasma membrane. A mirror image was found at 8.8 mM D-glucose, especially in the absence of insulin. At this close-to-physiological hexose concentration, insulin lowered the alpha/beta ratio for glycogen labelling. On the contrary, the rise in D-glucose concentration increased such a ratio. Since such a rise is probably little affected by any possible anomeric difference in D-glucose transport across the plasma membrane, the present results strongly suggest that the intracellular factors regulating net glycogen synthesis, as well as glycolytic flux, display obvious preference for alpha-D-glucose.  相似文献   

14.
Two substrains of the epithelial liver cell line C1I, one storing large amounts of glycogen, the other one being very poor in glycogen were used as a model for studying glycogen synthesis. The glycogen content of glycogen-rich cells doubled during the proliferative phase and remained high in plateau phase although glycogen synthase I activity was not significantly altered during growth cycle and was too low to account for the increase in glycogen. However, the activity of the glucose 6-phosphate (Glc6-P)-dependent synthase rose continuously during growth cycle, and intracellular Glc6-P-concentration increased about 10-fold in log phase cells to 0.72 mumol g-1 wet weight. A0.5 of synthase for Glc6-P was 0.79 mM. It was also found that in contrast to the enzyme from normal liver, glycogen phosphorylase a from C1I cells was inhibited by Glc6-P, the apparent Ki being 0.45 mM. It was concluded that glycogen accumulation in C1I cells was due to stimulation of synthase and inhibition of phosphorylase by Glc6-P. Findings from the glycogen-poor cell line which revealed similar specific activities of synthase and phosphorylase but only low Glc6-P (0.056 mumol g-1 wet weight) supported this conclusion. Addition of glucose to starved cells resulted in a transient activation of synthase in both cell lines. Net glycogen synthesis, was, however, only observed in the cells with a high Glc6-P-content. Thus, modulation of synthase and phosphorylase by Glc6-P and not activation/inactivation of the enzymes seems to play a predominant role in glycogen accumulation in this cell line.  相似文献   

15.
L Hue  F Sobrino    L Bosca 《The Biochemical journal》1984,224(3):779-786
Incubation of isolated rat hepatocytes from fasted rats with 0-6 mM-glucose caused an increase in [fructose 2,6-bisphosphate] (0.2 to about 5 nmol/g) without net lactate production. A release of 3H2O from [3-3H]glucose was, however, detectable, indicating that phosphofructokinase was active and that cycling occurred between fructose 6-phosphate and fructose 1,6-bisphosphate. A relationship between [fructose 2,6-bisphosphate] and lactate production was observed when hepatocytes were incubated with [glucose] greater than 6 mM. Incubation with glucose caused a dose-dependent increase in [hexose 6-phosphates]. The maximal capacity of liver cytosolic proteins to bind fructose 2,6-bisphosphate was 15 nmol/g, with affinity constants of 5 X 10(6) and 0.5 X 10(6) M-1. One can calculate that, at 5 microM, more than 90% of fructose 2,6-bisphosphate is bound to cytosolic proteins. In livers of non-anaesthetized fasted mice, the activation of glycogen synthase was more sensitive to glucose injection than was the increase in [fructose 2,6-bisphosphate], whereas the opposite situation was observed in livers of fed mice. Glucose injection caused no change in the activity of liver phosphofructokinase-2 and decreased the [hexose 6-phosphates] in livers of fed mice.  相似文献   

16.
At pH 7, addition of glucose under anaerobic conditions to a suspension of the yeast Saccharomyces cerevisiae causes both a transient hyperpolarization and a transient net efflux of K+ from the cells. Hyperpolarization shows a peak at about 3 min and a net K+ efflux at 4–5 min. An additional transient hyperpolarization and net K+ efflux are found after 60–80 and 100 min, respectively. Addition of 2-deoxyglucose instead of glucose does not lead to hyperpolarization of the cells or K+ efflux. At low pH, neither transient hyperpolarization nor a transient K+ efflux are found. With ethanol as substrate and applying aerobic conditions, both a transient hyperpolarization and a transient K+ efflux are found at pH 7. The fluorescent probe 2-(dimethylaminostyryl)-1-ethylpyridinium appears to be useful for probing changes in the membrane potential of S. cerevisiae. It is hypothesized that the hyperpolarization of the cells is due to opening of K+ channels in the plasma membrane. Accordingly, the hyperpolarization of the cells at pH 7 is almost completely abolished by 1.25 mM K+, whereas the same amount of Na+ does not reduce the hyperpolarization  相似文献   

17.
Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 °C, at an operating potential of +0.4 V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol−1 was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n = 4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R2 = 0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20 mM, with those determined spectrophotometrically (R2 = 0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(106 cells min) based on a 24-h period in culture.  相似文献   

18.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

19.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

20.
The effects of Ca2+, ionophore A23187, and vasopressin on CTP:phosphocholine cytidylyltransferase were investigated. Cytidylyltransferase is present in the cytosol and in a membrane-bound form on the microsomes. Digitonin treatment caused release of the cytosolic form rapidly. Addition of 7 mM Ca2+ to hepatocyte medium resulted in a 3-fold decrease in cytidylyltransferase released by digitonin treatment (1.7 +/- 0.1 nmol/min per mg compared to 5.1 +/- 0.2 nmol/min per mg in the control). Verapamil, a calcium channel blocker, partially overcame this effect of Ca2+. Ionophore A23187 and vasopressin both mimicked the effect of Ca2+ and resulted in a decrease in cytidylyltransferase release (2.4 +/- 0.1 nmol/min per mg and 2.5 +/- 0.2 nmol/min per mg, respectively) compared to control (3.4 +/- 0.1 nmol/min per mg). In agreement with the digitonin experiments, incubation with 7 mM Ca2+ resulted in a decrease in cytidylyltransferase in the cytosol (from 4.0 to 1.2 mol/min per mg) and a corresponding increase in the microsomes (from 0.6 to 2.4 nmol/min per mg). Verapamil partially blocked this translocation caused by Ca2+. Ionophore A23187 and vasopressin also caused translocation of the cytidylyltransferase from the cytosol to the microsomes. The addition of Ca2+ also resulted in an increase in PC synthesis. With 7 mM Ca2+ in the medium, the label associated with PC increased to 3.8 +/- 0.1.10(6) dpm/dish from 2.7 +/- 0.1.10(6) dpm/dish after 10 min. PC degradation was also affected, since 7 mM Ca2+ in the medium resulted in an increase in LPC formation both in the cell and the medium. We conclude that high concentrations of calcium in the hepatocyte medium can cause a stimulation of CTP:phosphocholine cytidylyltransferase and PC synthesis in cultured hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号