首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With a variety of forms of ischemic and toxic tissue injury, cellular accumulation of Ca2+ and generation of oxygen free radicals may have adverse effects upon cellular and, in particular, mitochondrial membranes. Damage to mitochondria, resulting in impaired ATP synthesis and diminished activity of cellular energy-dependent processes, could contribute to cell death. In order to model, in vitro, conditions present post-ischemia or during toxin exposure, the interactions between Ca2+ and oxygen free radicals on isolated renal mitochondria were characterized. The oxygen free radicals were generated by hypoxanthine and xanthine oxidase to simulate in vitro one of the sources of oxygen free radicals in the early post-ischemic period in vivo. With site I substrates, pyruvate and malate, Ca2+ pretreatment, followed by exposure to oxygen free radicals, resulted in an inhibition of electron transport chain function and complete uncoupling of oxidative phosphorylation. These effects were partially mitigated by dibucaine, a phospholipase A2 inhibitor. With the site II substrate, succinate, the electron transport chain defect was not manifest and respiration remained partially coupled. The electron transport chain defect produced by Ca2+ and oxygen free radicals was localized to NADH CoQ reductase. Calcium and oxygen free radicals reduced mitochondrial ATPase activity by 55% and adenine nucleotide translocase activity by 65%. By contrast oxygen free radicals alone reduced ATPase activity by 32% and had no deleterious effects on translocase activity. Dibucaine partially prevented the Ca2+-dependent reduction in ATPase activity and totally prevented the Ca2+-dependent translocase damage observed in the presence of oxygen free radicals. These findings indicate that calcium potentiates oxygen free radical injury to mitochondria. The Ca2+-induced potentiation of oxygen free radical injury likely is due in part to activation of phospholipase A2. This detrimental interaction associated with Ca2+ uptake by mitochondria and exposure of the mitochondria to oxygen free radicals may explain the enhanced cellular injury observed during post-ischemic reperfusion.  相似文献   

2.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

3.
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

4.
MitoSOX Red is a fluorescent probe used for the detection of mitochondrial reactive oxygen species by live cell imaging. The lipophilic, positively charged triphenylphosphonium moiety within MitoSOX concentrates the superoxide-sensitive dihydroethidium conjugate within the mitochondrial matrix. Here we investigated whether common MitoSOX imaging protocols influence mitochondrial bioenergetic function in primary rat cortical neurons and microglial cell lines. MitoSOX dose-dependently uncoupled neuronal respiration, whether present continuously in the assay medium or washed following a ten minute loading protocol. Concentrations of 5–10 μM MitoSOX caused severe loss of ATP synthesis-linked respiration. Redistribution of MitoSOX to the cytoplasm and nucleus occurred concomitant to mitochondrial uncoupling. MitoSOX also dose-dependently decreased the maximal respiration rate and this impairment could not be rescued by delivery of a complex IV specific substrate, revealing complex IV inhibition. As in neurons, loading microglial cells with MitoSOX at low micromolar concentrations resulted in uncoupled mitochondria with reduced respiratory capacity whereas submicromolar MitoSOX had no adverse effects. The MitoSOX parent compound dihydroethidium also caused mitochondrial uncoupling and respiratory inhibition at low micromolar concentrations. However, these effects were abrogated by pre-incubating dihydroethidium with cation exchange beads to remove positively charged oxidation products, which would otherwise by sequestered by polarized mitochondria. Collectively, our results suggest that the matrix accumulation of MitoSOX or dihydroethidium oxidation products causes mitochondrial uncoupling and inhibition of complex IV. Because MitoSOX is inherently capable of causing severe mitochondrial dysfunction with the potential to alter superoxide production, its use therefore requires careful optimization in imaging protocols.  相似文献   

5.
The aim of this work was to precisely determine the sites of the peroxidative action on unsatured lipids by oxygen-derived free radicals and the lytic cell damage on reoxygenated perfused hearts. The cellular load of lipid peroxidation products (malondialdehyde) during the reoxygenation was dependent on PO2. This unfavorable biochemical response was linked to creatine kinase leakage, alteration of coronary flow and mitochondrial injury. When an enzymatic (superoxide dismutase, 290 IU/minute) or tripeptide scavenger of oxygen radicals (reduced glutathione, 0.5 mmol/l) was administered at the end of hypoxia and during reoxygenation, the abnormal intolerance of hypoxic heart to molecular oxygen was significantly weakened; the load of lipid peroxides load, enzyme release, and vascular alteration were all reduced. Moreover, mitochondrial activity was enhanced and the oxygen-induced uncoupling of mitochondrial remained limited: both the respiratory control ratio (RCR) and the ADP/O ratio were higher than in control reoxygenated hearts. The inhibition by rotenone (100 mumol/l) of reoxidation of electron chain transfer during oxygen readmission also reduced the unfavorable cardiac accumulation of lipid peroxidation products and the release of creatine kinase. These data demonstrate that in the oxygen paradox, the peroxidative attack on lipids plays an important role in inducing alterations of sarcolemmal permeability and mitochondrial activity. An uncontrolled reactivation of oxidative function of mitochondria during reoxygenation enhances the synthesis of oxygen-derived free radicals and triggers the peroxidation of cardiac lipids resulting in irreversible injury to cellular and intracellular membranes.  相似文献   

6.
Continuous exposure of Chinese hamster ovary (CHO) cells to an atmosphere of 98% O2, 2% CO2 (normobaric hyperoxia) leads within a period of several days to cytostasis and clonogenic cell death. Here we report respiratory failure as an important early symptom of oxygen intoxication in CHO cells, resulting in a more than 80% inhibition of oxygen consumption within 3 days of hyperoxic exposure. This inhibition appeared to be correlated with selective inactivation of three mitochondrial key enzymes, NADH dehydrogenase, succinate dehydrogenase, and alpha-ketoglutarate dehydrogenase. The latter enzyme controls the influx of glutamate into the Krebs cycle and is particularly critical for oxidative ATP generation in most cultured cells, which depends on exogenous glutamine rather than glucose as a carbon source. As expected, the inactivation of alpha-ketoglutarate dehydrogenase was correlated with a fall in cellular glutamine utilization, which became apparent from the first day of hyperoxic exposure. Thereafter, glucose utilization and lactate excretion started to increase, up to 3-fold, indicating a cellular response to respiratory failure aimed at increased ATP generation from glycolysis. However, in spite of this response, the cellular ATP level progressively decreased, up to 2.5-fold. Thus, killing of CHO cells by normobaric hyperoxia seems to be due to a severe disturbance of mitochondrial metabolism eventually leading to a depletion of cellular ATP pools.  相似文献   

7.
Opening of a non-specific, high conductance permeability transition pore or megachannel in the inner mitochondrial membrane causes onset of the mitochondrial permeability transition, which is characterized by mitochondrial swelling, depolarization and uncoupling. Inducers of the permeability transition include Ca2+, oxidant stress and a permissive pH greater than 7.0. Blockers include cyclosporin A, trifluoperazine and pH < 7. Using laser scanning confocal microscopy, we developed techniques to visualize onset of the mitochondrial permeability transition in situ in living cells. In untreated cells, the permeability transition pore is continuously closed and does not 'flicker' open. By contrast, the pore opens in liver and heart cells after exposure to oxidant chemicals, calcium ionophore, hypoxia and ischemia/reperfusion, causing mitochondrial uncoupling and aggravation of ATP depletion. In injury to hepatocytes from tert-butylhydroperoxide, an analog of lipid hydroperoxides generated during oxidative stress, onset of the mitochondrial permeability transition is preceded by oxidation of mitochondrial pyridine nucleotides, mitochondrial generation of oxygen radicals and an increase of mitochondrial Ca2+, all inducers of the mitochondrial permeability transition. In ischemia, the acidosis of anaerobic metabolism protects strongly against cell death. During reperfusion, recovery of pH to normal levels is a stress that actually precipitates cell killing. Onset of the mitochondrial permeability transition may be responsible, in part, for this pH-dependent injury, or pH paradox. The mitochondrial permeability transition may also be responsible for a variety of pathological phenomena. In particular, the mitochondrial permeability transition may underlie Reye's syndrome and Reye's-like drug toxicities. In conclusion, multiple mechanisms contribute to cell injury after hypoxia, ischemia/reperfusion and toxic chemicals, but a common final pathway leading to acute cellular nec rosis may be ATP depletion after mitochondrial failure. One important mechanism causing mitochondrial failure is the mitochondrial permeability transition, which both uncouples oxidative phosphorylation and accelerates ATP hydrolysis. Interventions that block this pH-dependent phenomenon protect against onset of cell death. (Mol Cell Biochem 174: 159–165, 1997)  相似文献   

8.
9.
Increased lung cell apoptosis and necrosis occur in patients with chronic obstructive pulmonary disease (COPD). Mitochondria are crucially involved in the regulation of these cell death processes. Cigarette smoke is the main risk factor for development of COPD. We hypothesized that cigarette smoke disturbs mitochondrial function, thereby decreasing the capacity of mitochondria for ATP synthesis, leading to cellular necrosis. This hypothesis was tested in both human bronchial epithelial cells and isolated mitochondria. Cigarette smoke extract exposure resulted in a dose-dependent inhibition of complex I and II activities. This inhibition was accompanied by decreases in mitochondrial membrane potential, mitochondrial oxygen consumption, and production of ATP. Cigarette smoke extract abolished the staurosporin-induced caspase-3 and -7 activities and induced a switch from epithelial cell apoptosis into necrosis. Cigarette smoke induced mitochondrial dysfunction, with compounds of cigarette smoke acting as blocking agents of the mitochondrial respiratory chain; loss of ATP generation leading to cellular necrosis instead of apoptosis is a new pathophysiological concept of COPD development.  相似文献   

10.
Valérie Desquiret 《BBA》2006,1757(1):21-30
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 μM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

11.
Development of hepatocellular carcinoma (HCC) is accompanied by a continuous increase in reactive oxygen species (ROS) levels. To investigate the primary source of ROS in liver cells, we used tumor necrosis factor-alpha (TNF-α) as stimulus. Applying inhibitors against the respiratory chain complexes, we identified mitochondria as primary source of ROS production. TNF-α altered mitochondrial integrity by mimicking a mild uncoupling effect in liver cells, as indicated by a 40% reduction in membrane potential and ATP depletion (35%). TNF-α-induced ROS production activated NF-κB 3.5-fold and subsequently enhanced migration up to 12.7-fold. This study identifies complex I and complex III of the mitochondrial respiratory chain as point of release of ROS upon TNF-α stimulation of liver cells, which enhances cell migration by activating NF-κB signalling.  相似文献   

12.
Mitochondria are the major ATP producer of the mammalian cell. Moreover, mitochondria are also the main intracellular source and target of reactive oxygen species (ROS) that are continually generated as by-products of aerobic metabolism in human cells. A low level of ROS generated from the respiratory chain was recently proposed to take part in the signaling from mitochondria to the nucleus. Several structural characteristics of mitochondria and the mitochondrial genome enable them to sense and respond to extracellular and intracellular signals or stresses in order to sustain the life of the cell. It has been established that mitochondrial respiratory function declines with age, and that defects in the respiratory chain increase the production of ROS and free radicals in mitochondria. Within a certain concentration range, ROS may induce stress responses of the cell by altering the expression of a number of genes in order to uphold energy metabolism to rescue the cell. However, beyond this threshold, ROS may elicit apoptosis by induction of mitochondrial membrane permeability transition and release of cytochrome c. Intensive research in the past few years has established that mitochondria play a pivotal role in the early phase of apoptosis in mammalian cells. In this article, the role of mitochondria in the determination of life and death of the cell is reviewed on the basis of recent findings gathered from this and other laboratories.  相似文献   

13.
Durum wheat mitochondria (DWM) possess an ATP-inhibited K(+) channel, the plant mitoK(ATP) (PmitoK(ATP) ), which is activated under environmental stress to control mitochondrial ROS production. To do this, PmitoK(ATP) collapses membrane potential (ΔΨ), thus suggesting mitochondrial uncoupling. We tested this point by studying oxidative phosphorylation (OXPHOS) in DWM purified from control seedlings and from seedlings subjected both to severe mannitol and NaCl stress. In severely-stressed DWM, the ATP synthesis via OXPHOS, continuously monitored by a spectrophotometric assay, was about 90% inhibited when the PmitoK(ATP) was activated by KCl. Contrarily, in control DWM, although PmitoK(ATP) collapsed ΔΨ, ATP synthesis, as well as coupling [respiratory control (RC) ratio and ratio between phosphorylated ADP and reduced oxygen (ADP/O)] checked by oxygen uptake experiments, were unaffected. We suggest that PmitoK(ATP) may play an important defensive role at the onset of the environmental/oxidative stress by preserving energy in a crucial moment for cell and mitochondrial bioenergetics. Consistently, under moderate mannitol stress, miming an early stress condition, the channel may efficiently control reactive oxygen species (ROS) generation (about 35-fold from fully open to closed state) without impairing ATP synthesis. Anyway, if the stress significantly proceeds, the PmitoK(ATP) becomes fully activated by decrease of ATP concentration (25-40%) and increase of activators [free fatty acids (FFAs) and superoxide anion], thus impairing ATP synthesis.  相似文献   

14.
S S Barham  B R Brinkley 《Cytobios》1976,15(58-59):85-96
Inhibitors of mitochondrial respiration, phosphorylation inhibitors, and uncoupling agents have been reported to delay or inhibit mitosis in cultured mammalian cells. Although the molecular mechanism by which mitosis is delayed in the presence of most respiratory inhibitors presumably involves lowered ATP production for mitotic requirements, one respiratory inhibitor, rotenone, was determined to arrest mitosis by an unrelated mechanism. Cell cycle kinetics studies, oxygen consumption measurements, and viscosity assays indicate that rotenone arrests cultured mammalian cells in mitosis by inhibiting spindle microtubule assembly by a mechanism analogous with colchicine, Colecemid and related antimitotic drugs. Amytal, which blocks electron transport at the same site as does rotenone, failed to arrest cell progression at mitosis. Rotenone delayed cell progression in all phases of the cell cycle, apparently as a direct result of respiration inhibition. Thus, rotenone appears to exert a dual function on events of the cell cycle.  相似文献   

15.
During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α). Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα) phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB). The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis). Our data suggest that remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.  相似文献   

16.
The recent knowledge on mitochondria as the substantial source of reactive oxygen species, namely superoxide and hydrogen peroxide efflux from mitochondria, is reviewed, as well as nitric oxide and subsequent peroxynitrite generation in mitochondria and their effects. The reactive oxygen species formation in extramitochondrial locations, in peroxisomes, by cytochrome P450, and NADPH oxidase reaction, is also briefly discussed. Conditions are pointed out under which mitochondria represent the major ROS source for the cell: higher percentage of non-phosphorylating and coupled mitochondria, in vivo oxygen levels leading to increased intensity of the reverse electron transport in the respiratory chain, and nitric oxide effects on the redox state of cytochromes. We formulate hypotheses on the crucial role of ROS generated in mitochondria for the whole cell and organism, in concert with extramitochondrial ROS and antioxidant defense. We hypothesize that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a “ROS sink” represented by the instantly released excessive capacity of ROS-detoxification mechanisms. A partial but immediate decline of mitochondrial ROS production may be triggered by activation of mitochondrial uncoupling, specifically by activation of recruited or constitutively present uncoupling proteins such as UCP2, which may counterbalance the mild oxidative stress.  相似文献   

17.
In order to better understand the impact of reduced mitochondrial function for the development of insulin resistance and cellular metabolism, human myotubes were established from lean, obese, and T2D subjects and exposed to mitochondrial inhibitors, either affecting the electron transport chain (Antimycin A), the ATP synthase (oligomycin) or respiratory uncoupling (2,4-dinitrophenol). Direct inhibition of the electron transport chain or the ATP synthase was followed by increased glucose uptake and lactate production, reduced glycogen synthesis, reduced lipid and glucose oxidation and unchanged lipid uptake. The metabolic phenotype during respiratory uncoupling resembled the above picture, except for an increase in glucose and palmitate oxidation. Antimycin A and oligomycin treatment induced insulin resistance at the level of glucose and palmitate uptake in all three study groups while, at the level of glycogen synthesis, insulin resistance was only seen in lean myotubes. Primary insulin resistance in diabetic myotubes was significantly worsened at the level of glucose and lipid uptake. The present study is the first convincing data linking functional mitochondrial impairment per se and insulin resistance. Taken together functional mitochondrial impairment could be part of the pathophysiology of insulin resistance in vivo.  相似文献   

18.
Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions. Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116 cells, a large increase in O2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln, addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca2 + or membrane potential. However, we propose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial transport of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration upon uncoupling is abolished in cells, deprived of Gln or Pyr (Glc). Unlike PC12 or HCT116 cells, mouse embryonic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function, and can be explored for selective cancer treatment.  相似文献   

19.
Two biochemical deficits have been described in the substantia nigra in Parkinson's disease, decreased activity of mitochondrial complex I and reduced proteasomal activity. We analysed interactions between these deficits in primary mesencephalic cultures. Proteasome inhibitors (epoxomicin, MG132) exacerbated the toxicity of complex I inhibitors [rotenone, 1-methyl-4-phenylpyridinium (MPP+)] and of the toxic dopamine analogue 6-hydroxydopamine, but not of inhibitors of mitochondrial complex II-V or excitotoxins [N-methyl-d-aspartate (NMDA), kainate]. Rotenone and MPP+ increased free radicals and reduced proteasomal activity via adenosine triphosphate (ATP) depletion. 6-hydroxydopamine also increased free radicals, but did not affect ATP levels and increased proteasomal activity, presumably in response to oxidative damage. Proteasome inhibition potentiated the toxicity of rotenone, MPP+ and 6-hydroxydopamine at concentrations at which they increased free radical levels >/= 40% above baseline, exceeding the cellular capacity to detoxify oxidized proteins reduced by proteasome inhibition, and also exacerbated ATP depletion caused by complex I inhibition. Consistently, both free radical scavenging and stimulation of ATP production by glucose supplementation protected against the synergistic toxicity. In summary, proteasome inhibition increases neuronal vulnerability to normally subtoxic levels of free radicals and amplifies energy depletion following complex I inhibition.  相似文献   

20.
Mitochondria, in addition to energy transformation, play a role in important metabolic tasks such as apoptosis, cellular proliferation, heme/steroid synthesis as well as in the cellular redox state regulation. The mitochondrial phosphorylation process is very efficient, but a small percentage of electrons may prematurely reduce oxygen forming toxic free radicals potentially impairing the mitochondria function. Furthermore, under certain conditions, protons can reenter the mitochondrial matrix through different uncoupling proteins (UCPs), affecting the control of free radicals production by mitochondria. Disorders of the mitochondrial electron transport chain, overgeneration of reactive oxygen species (ROS) and lipoperoxides or impairments in antioxidant defenses have been reported in situations of obesity and type-2 diabetes. On the other hand, obesity has been associated to a low degree pro-inflammatory state, in which impairments in the oxidative stress and antioxidant mechanism could be involved. Indeed, reactive oxygen species have been attributed a causal role in multiple forms of insulin resistance. The scientific evidence highlights the importance of investigating the relationships between oxidative stress and inflammation with obesity/diabetes onset and underlines the need to study in mitochondria from different tissues, the interactions of such factors either as a cause or consequence of obesity and insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号