首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Australian endemic ant Nothomyrmecia macrops is renowned for having retained a large proportion of 'primitive' morphological and behavioural characters. Another less studied peculiarity of this species is the production of short-winged (brachypterous) female sexuals, which presumably are poor dispersers. The males, in contrast, bear a full set of normally developed wings and thus may disperse widely. We investigated patterns of genetic differentiation within and among three distantly separated populations in South Australia using nine polymorphic microsatellite loci and four regions of mitochondrial DNA (COI, COII, Cytb, lrRNA). We sampled eight subpopulations, one in the Lake Gilles CP, two near Penong and five around Poochera where distances ranged from 360 km to sites separated by 2-10 km. Only little differentiation was found at the local scale (within the assumed dispersal distance of males) using nuclear markers, whereas the three distant locations were moderately differentiated (FST = 0.06). Mitochondrial DNA genetic structure was much more pronounced on all scales (phiST = 0.98), with regular differences in both haplotype composition and frequency even occurring among closely located sites. This lack of congruence between nuclear and mitochondrial markers strongly suggests limited female dispersal and male-biased gene flow among populations. As to the conservation status of the species there is no evidence for severe population reductions in the recent past, which would have left populations genetically depauperate.  相似文献   

2.
3.
Patterns of gene flow and genetic structuring were examined in the canyon treefrog, Hyla arenicolor (Cope). Hierarchical analysis of genetic variation was performed on mitochondrial cytochrome b haplotypes from 323 individuals, representing 32 populations from previously described phylogeographic regions. Results from AMOVA revealed that 60.4-78.9% of the recovered genetic variation was the result of differences in the appointment of genetic variation between subdivisions of the primary phylogeographic regions. In contrast, populations only contained between 13.9 and 30.1% of the observed haplotypic variation. Gene flow estimates based on calculations of phi ST revealed moderate levels of gene flow within phylogeographic regions, but there was no evidence of gene flow between these regions, suggesting that geographical boundaries were probably important in the formation of phylogeographic structure in H. arenicolor. Phylogeographic regions exhibited very different patterns of gene flow. One region showed evidence of recent colonization. Another region exhibited very limited gene flow. Moderate to high estimates of gene flow were obtained for populations from two distinct phylogeographic regions characterized by mesic and xeric environments. Isolation by distance was observed in both regions suggesting that these regions are in genetic equilibrium. Because gene flow is extremely unlikely between the populations in the xeric region, this result is interpreted as historical gene flow. These results indicate that isolation-by-distance effects may still be observed even when population genetic structure and gene flow are the result of historical association.  相似文献   

4.
Population subdivision and gene flow in Danish house mice   总被引:4,自引:0,他引:4  
Genetic subdivision in local populations of the European house mice, Mus musculus domesticus and M. m. musculus, was analysed to study patterns of gene flow. The data consisted of frequencies of microsatellite alleles in 16 samples (250 individuals) from a total of 11 sites in Jutland, which included successive samples from three sites. Sequences of the control region of mitochondrial DNA in three successive samples from one site were also analysed. Microsatellite genotype frequencies within samples were close to Hardy-Weinberg expectations. Levels of microsatellite differentiation among samples (θ= 0.05–0.21) corresponded to limited gene flow at migration-drift equilibrium (Nm= 1–5). Weak isolation by distance for microsatellites in M. m. musculus suggested that gene flow tends to occur among neighbouring sites. Estimates of effective population size over a few generations were much lower than those corresponding to the long periods needed for arrival at mutation-drift equilibrium. This suggested that subpopulations had been influenced by gene flow since formation, or had originated recently from genetically diverse founders.  相似文献   

5.
6.
Meng XF  Shi M  Chen XX 《Molecular ecology》2008,17(12):2880-2897
Chilo suppressalis (Walker) displays significant geographical differences in ecological preference that may be congruent with patterns of molecular variation. To test this, we collected and analysed 381 individuals of this species from cultivated rice at 18 localities in China during the rice-growing season of 2005–2006. We used four microsatellite DNA markers and four mitochondrial DNA gene fragments. We found that this species is highly differentiated, coupled with an estimated population expansion date of at least 60 000  bp . Phylogenetic analyses, Bayesian clustering, and phylogeographical analyses of statistical parsimony haplotype network consistently divided the populations into three clades: a central China (CC) clade, a northern plus northeastern China (NN) clade and a southwestern China (SW) clade. Analysis of molecular variance indicated a high level of geographical differentiation at different hierarchical levels [ F ST for microsatellite markers, COI, COII, 16S and ND1 is 0.06004 ( P  < 0.0001), 0.27607 ( P  < 0.0001), 0.22949 ( P  < 0.0001), 0.19485 ( P  < 0.0001) and 0.29285 ( P  < 0.0001), respectively]. Isolation by distance appeared among the samples from within China ( r  = 0.404, P  = 0.0002); Nem values estimated using a coalescent-based method were small (< 2 migrants per generation), suggesting that the observed levels of differentiation are a result of migration–drift equilibrium. Our results imply that the genetic differentiation of this borer, which is approximately in accordance with its observed number of generations per year in different Chinese geographical regions, is probably attributed to climatic and/or geological events (e.g. the last glacial maximum) and subsequently strengthened by the domestication of rice.  相似文献   

7.
8.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

9.
10.
The purpose of this study was to validate noninvasive endocrine monitoring techniques for African wild dogs (Lycaon pictus) and to establish physiological validity of these methods by evaluating longitudinal reproductive-endocrine profiles in captive individuals. To determine the primary excretory by-products of ovarian steroid metabolism, [14C]-progesterone and [3H]-estradiol were co-administered to a female and all excreta were collected for 80 hr postinjection. Radiolabel excretion peaked ≤ 18 hr postinfusion, and progesterone and estradiol metabolites were excreted in almost equivalent proportions in urine (39.7 and 41.1%, respectively) and feces (60.3 and 58.9%, respectively). Most of the urinary metabolites were conjugated (estradiol, 94.3 ± 0.3%; progesterone, 90.4 ± 0.5%), so that immunoassays for pregnanediol-3α-glucuronide (PdG) and estrogen conjugates (EC) were effective for assessing steroid metabolites. Two immunoreactive estrogens (estradiol and estrone) and at least one immunoreactive progesterone metabolite (3α-hydroxy-5α, pregnan-20-one) were detected in feces. Urine and fecal samples were collected (1–3 times per week) for 1.5 yr from one adult female and two adult males to assess longitudinal steroid metabolite excretion. Overall correlation of urinary PdG to matched, same-day fecal progesterone metabolites immunoreactivity was 0.38 (n = 71, P < 0.05). Similarly, urinary EC was correlated (P < 0.05) with same-day fecal estrogen immunoreactivity (r = 0.49, n = 71). During pregnancy and nonpregnant cycles, copulation occurred at the time of peak (or declining) estrogen metabolites and increasing progesterone metabolites concentrations. Estrus duration was 6–9 days and gestation lasted 69 days with parturition occurring coincident with a drop in progesterone metabolites. Males exhibited seasonal trends in fecal testosterone excretion with maximal concentrations from July to September coincident with peak mating activity. Although these limited longitudinal hormone profiles should be interpreted cautiously, noninvasive gonadal steroid monitoring suggests that: (1) both female and male wild dogs may exhibit reproductive seasonality in North America, (2) females are monoestrous, and (3) peak testicular activity occurs between August and October coincident with mating behavior. From a conservation perspective, noninvasive endocrine monitoring techniques should be useful for augmenting captive breeding programs, as well as for developing an improved understanding of the physiological mechanisms underlying reproductive suppression in response to social and ecological pressures. Zoo Biol 16:533–548, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The Regal Fritillary butterfly, Speyeria idalia (Drury) (Lepidoptera: Nymphalidae), has been described as a high gene flow species. Supporting this assertion, previous studies in the Great Plains, where it is still relatively widespread, have found evidence of gene flow across hundreds of kilometers. Using mitochondrial and microsatellite loci, we examined the spatial genetic structure of a very isolated Pennsylvania population of these butterflies that occupies three separate meadows located within ten kilometers of each other. We found restricted gene flow and a distinct structure, with each meadow having a unique genetic signature. Our findings indicate that even a species that normally exhibits high gene flow may show fine-scale genetic subdivision in areas where populations have been largely extirpated.Authors contributed equally.  相似文献   

12.
The franciscana dolphin, Pontorporia blainvillei, is an endemic cetacean of the Atlantic coast of South America. Its coastal distribution and restricted movement patterns make this species vulnerable to anthropogenic factors, particularly to incidental bycatch. We used mitochondrial DNA control region sequences, 10 microsatellites, and sex data to investigate the population structure of the franciscana dolphin from a previously established management area, which includes the southern edge of its geographic range. F‐statistics and Bayesian cluster analyses revealed the existence of three genetically distinct populations. Based on the microsatellite loci, similar levels of genetic variability were found in the area; 13 private alleles were found in Monte Hermoso, but none in Claromecó. When considering the mitochondrial DNA control region sequences, lower levels of genetic diversity were found in Monte Hermoso, when compared to the other localities. Low levels of gene flow were found between most localities. Additionally, no evidence of isolation by distance nor sex‐biased dispersal was detected in the study area. In view of these results showing that populations from Necochea/Claromecó, Monte Hermoso, and Río Negro were found to be genetically distinct and the available genetic information for the species previously published, Argentina would comprise five distinct populations: Samborombón West/Samborombón South, Cabo San Antonio/Buenos Aires East, Necochea/Claromecó/Buenos Aires Southwest, Monte Hermoso, and Río Negro. In order to ensure the long‐term survival of the franciscana dolphin, management and conservation strategies should be developed considering each of these populations as different management units.  相似文献   

13.
Knowledge of genetic connectivity dynamics in the world's large‐bodied, highly migratory, apex predator sharks across their global ranges is limited. One such species, the tiger shark (Galeocerdo cuvier), occurs worldwide in warm temperate and tropical waters, uses remarkably diverse habitats (nearshore to pelagic) and possesses a generalist diet that can structure marine ecosystems through top‐down processes. We investigated the phylogeography and the global population structure of this exploited, phylogenetically enigmatic shark by using 10 nuclear microsatellites (= 380) and sequences from the mitochondrial control region (CR,= 340) and cytochrome oxidase I gene (= 100). All three marker classes showed the genetic differentiation between tiger sharks from the western Atlantic and Indo‐Pacific ocean basins (microsatellite FST > 0.129; CR ΦST > 0.497), the presence of North vs. southwestern Atlantic differentiation and the isolation of tiger sharks sampled from Hawaii from other surveyed locations. Furthermore, mitochondrial DNA revealed high levels of intraocean basin matrilineal population structure, suggesting female philopatry and sex‐biased gene flow. Coalescent‐ and genetic distance‐based estimates of divergence from CR sequences were largely congruent (dcorr = 0.0015–0.0050), indicating a separation of Indo‐Pacific and western Atlantic tiger sharks <1 million years ago. Mitochondrial haplotype relationships suggested that the western South Atlantic Ocean was likely a historical connection for interocean basin linkages via the dispersal around South Africa. Together, the results reveal unexpectedly high levels of population structure in a highly migratory, behaviourally generalist, cosmopolitan ocean predator, calling for management and conservation on smaller‐than‐anticipated spatial scales.  相似文献   

14.
It is crucial to understand the genetic health and implications of inbreeding in wildlife populations, especially of vulnerable species. Using extensive demographic and genetic data, we investigated the relationships among pedigree inbreeding coefficients, metrics of molecular heterozygosity and fitness for a large population of endangered African wild dogs (Lycaon pictus) in South Africa. Molecular metrics based on 19 microsatellite loci were significantly, but modestly correlated to inbreeding coefficients in this population. Inbred wild dogs with inbreeding coefficients of ??0.25 and subordinate individuals had shorter lifespans than outbred and dominant contemporaries, suggesting some deleterious effects of inbreeding. However, this trend was confounded by pack-specific effects as many inbred individuals originated from a single large pack. Despite wild dogs being endangered and existing in small populations, findings within our sample population indicated that molecular metrics were not robust predictors in models of fitness based on breeding pack formation, dominance, reproductive success or lifespan of individuals. Nonetheless, our approach has generated a vital database for future comparative studies to examine these relationships over longer periods of time. Such detailed assessments are essential given knowledge that wild canids can be highly vulnerable to inbreeding effects over a few short generations.  相似文献   

15.
The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from a biogeographic boundary, geographical distance and the distribution of suitable habitat were investigated in Axoclinus nigricaudus, a small subtidal rock-reef fish, throughout its range in the Gulf of California. A 408-bp fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between 28 of 36 possible combinations of population pairs. Phylogenetic analyses, hierarchical analyses of variance and a modified Mantel test substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics, including temperature and salinity, but does not coincide with known oceanographic circulation patterns or any known historic barriers. There was an overall relationship of increasing genetic distance with increasing geographical distance between population pairs, in a manner consistent with isolation-by-distance. A significant habitat-by-geographical-distance interaction term indicated that, for a given geographical distance, populations separated by discontinuous habitat (sand) are more distinct genetically than are populations separated by continuous habitat (rock). In addition, populations separated by deep open waters were more genetically distinct than populations separated by continuous habitat (rock). These results indicate that levels of genetic differentiation among populations of A. nigricaudus cannot be explained by a single factor, but are due to the combined influences of biogeography, geographical distance and availability of suitable habitat.  相似文献   

16.
Anopheles funestus is a primary vector of malaria in Africa south of the Sahara. We assessed its rangewide population genetic structure based on samples from 11 countries, using 10 physically mapped microsatellite loci, two per autosome arm and the X (N = 548), and 834 bp of the mitochondrial ND5 gene (N = 470). On the basis of microsatellite allele frequencies, we found three subdivisions: eastern (coastal Tanzania, Malawi, Mozambique and Madagascar), western (Burkina Faso, Mali, Nigeria and western Kenya), and central (Gabon, coastal Angola). A. funestus from the southwest of Uganda had affinities to all three subdivisions. Mitochondrial DNA (mtDNA) corroborated this structure, although mtDNA gene trees showed less resolution. The eastern subdivision had significantly lower diversity, similar to the pattern found in the codistributed malaria vector Anopheles gambiae. This suggests that both species have responded to common geographic and/or climatic constraints. The western division showed signatures of population expansion encompassing Kenya west of the Rift Valley through Burkina Faso and Mali. This pattern also bears similarity to A. gambiae, and may reflect a common response to expanding human populations following the development of agriculture. Due to the presumed recent population expansion, the correlation between genetic and geographic distance was weak. Mitochondrial DNA revealed further cryptic subdivision in A. funestus, not detected in the nuclear genome. Mozambique and Madagascar samples contained two mtDNA lineages, designated clade I and clade II, that were separated by two fixed differences and an average of 2% divergence, which implies that they have evolved independently for approximately 1 million years. Clade I was found in all 11 locations, whereas clade II was sampled only on Madagascar and Mozambique. We suggest that the latter clade may represent mtDNA capture by A. funestus, resulting from historical gene flow either among previously isolated and divergent populations or with a related species.  相似文献   

17.
In a paper published fifteen years ago, Gorman et al. (Nature 391 , 479–481) made precise claims about how sensitive the African wild dog is to kleptoparasitism by spotted hyaenas Crocuta crocuta and lions Panthera leo. These claims are regularly referred to in the literature, and so far, they have remained unchallenged. However, careful perusal of their paper and analysis of the available data on energy intake and expenditure by wild dogs show that their claims are unfounded. Contrary to Gorman et al., wild dogs can usually take loss of food by kleptoparasitism in their stride. We present the calculations of the energy budget of wild dogs that remain implicit in the paper by Gorman et al.  相似文献   

18.
Bonobos are large, highly mobile primates living in the relatively undisturbed, contiguous forest south of the Congo River. Accordingly, gene flow among populations is assumed to be extensive, but may be impeded by large, impassable rivers. We examined mitochondrial DNA control region sequence variation in individuals from five distinct localities separated by rivers in order to estimate relative levels of genetic diversity and assess the extent and pattern of population genetic structure in the bonobo. Diversity estimates for the bonobo exceed those for humans, but are less than those found for the chimpanzee. All regions sampled are significantly differentiated from one another, according to genetic distances estimated as pairwise FSTs, with the greatest differentiation existing between region East and each of the two Northern populations (N and NE) and the least differentiation between regions Central and South. The distribution of nucleotide diversity shows a clear signal of population structure, with some 30% of the variance occurring among geographical regions. However, a geographical patterning of the population structure is not obvious. Namely, mitochondrial haplotypes were shared among all regions excepting the most eastern locality and the phylogenetic analysis revealed a tree in which haplotypes were intermixed with little regard to geographical origin, with the notable exception of the close relationships among the haplotypes found in the east. Nonetheless, genetic distances correlated with geographical distances when the intervening distances were measured around rivers presenting effective current-day barriers, but not when straight-line distances were used, suggesting that rivers are indeed a hindrance to gene flow in this species.  相似文献   

19.
20.
Populations from different parts of a species range may vary in their genetic structure, variation and dynamics. Geographically isolated populations or those located at the periphery of the range may differ from those located in the core of the range. Such peripheral populations may harbour genetic variation important for the adaptive potential of the species. We studied the distribution‐wide population genetic structure of the Terek Sandpiper Xenus cinereus using 13 microsatellite loci and the mitochondrial DNA (mtDNA) control region. In addition, we estimated whether genetic variation changes from the core towards the edge of the breeding range. We used the results to evaluate the management needs of the sampled populations. Distribution‐wide genetic structure was negligible; the only population that showed significant genetic differentiation was the geographically isolated Dnieper River basin population in Eastern Europe. The genetic variation of microsatellites decreased towards the edge of the distribution, supporting the abundant‐centre hypotheses in which the core area of the distribution preserves the most genetic variation; however, no such trend could be seen with mtDNA. Overall genetic variation was low and there were signs of past population contractions followed by expansion; this pattern is found in most northern waders. The current effective population size (Ne) is large, and therefore global conservation measures are not necessary. However, the marginal Dnieper River population needs to be considered its own management unit. In addition, the Finnish population warrants conservation actions due to its extremely small size and degree of isolation from the main range, which makes it vulnerable to genetic depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号