首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycerol 1,3-diglycerol diacrylate-grafted poly(3-hydroxyoctanoate) (GDD-g-PHO) copolymers were prepared by heating homogeneous solutions of PHO, GDD monomer and benzoylperoxide initiator. Experiments showed that GDD was successfully grafted onto the PHO chains and that the resulting copolymers had enhanced thermal properties and mechanical strengths. The surfaces and the bulk of GDD-g-PHO copolymers became more hydrophilic as the GDD grafting density in the copolymer increased. Measurements of the growth of Chinese hamster ovary cells and the adsorption of blood proteins and platelets in vitro showed that biocompatibility was also enhanced by grafting of GDD groups. These results indicate that the GDD-g-PHO copolymers are promising materials for biocompatible biomedical applications.  相似文献   

2.
Homogeneous solutions of poly(3-hydroxyoctanoate) (PHO) and the monoacrylate-poly(ethylene glycol) (PEGMA) monomer in chloroform were irradiated with UV light to obtain PEGMA-grafted PHO (PEGMA-g-PHO) copolymers. Variables affecting the degree of grafting (DG), such as the time of UV irradiation and the concentrations of the PEGMA monomer and initiator, were investigated. The PEGMA-g-PHO copolymers were characterized by measuring the water contact angle, molecular weight, thermal transition temperatures and mechanical properties, as well as by nuclear magnetic resonance spectroscopy. The results from all of these measurements indicate that PEGMA groups were present on the PHO polymer. The protein adsorption and platelet adhesion on the PEGMA-g-PHO surfaces were examined using poly(L-lactide) (PLLA) surfaces as the control. The proteins and platelets had a significantly lower tendency to adhere to the PEGMA-g-PHO copolymers than to PLLA. The graft copolymer with a high DG of PEGMA was very effective in reducing the protein adsorption and platelet adhesion and did not activate the platelets. The results obtained in this study suggest that PEGMA-g-PHO copolymers have the potential to be used as blood-contacting devices in a broad range of biomedical applications.  相似文献   

3.
Two different series of polyethylenimine (PEI) block copolymers grafted with linear poly(ethylene glycol) (PEG) were investigated as delivery systems for oligodeoxynucleotides (ODN) and ribozymes. The resulting interpolyelectrolyte complexes were characterized with respect to their physicochemical properties, protection efficiency against enzymatic degradation, complement activation, and biological activity under in vitro conditions. The effect of PEG molecular weight and the graft density of PEG blocks on complex characteristics was studied with two different series of block copolymers. The resulting ODN complexes were characterized by photon correlation spectroscopy (PCS) and laser Doppler anemometry (LDA) to determine complex size and zeta potential. Electrophoresis was performed to study the protective effects of the different block copolymers against enzymatic degradation of ODN. Intact ODN was quantified via densitometric analysis. Ribozymes, a particularly unstable type of oligonucleotides, were used to examine the influence of block copolymer structure on biological activity. The stabilization of ribozymes was also characterized in a cell culture model. Within the first series of block copolymers, the grafted PEG chains (5 kDa) had marginal influence on the complex size. Two grafted PEG chains were sufficient to achieve a neutral zeta potential. Within the second series, size and zeta potential increased with an increasing number of PEG chains. A high number of short PEG chains resulted in a decrease in complex size to values comparable to that of the homopolymer PEI 25 kDa and a neutral zeta potential, indicating a complete shielding of the charges. Complement activation decreased with an increasing number of short PEG 550 Da chains. Ribozyme complexes with PEG-PEI block copolymers achieved a 50% down-regulation of the target mRNA. This effect demonstrated an efficient stabilization and biological activity of the ribozyme, which was comparable to that of PEI 25 kDa. PEGylated PEI block copolymers represent a promising new class of drug delivery systems for ODN and ribozymes with increased biocompatibility and physical stability.  相似文献   

4.
Monoacrylate-poly(ethylene glycol)-grafted poly(3-hydroxyoctanoate) (PEGMA-g-PHO) copolymers were synthesized to develop a swelling-controlled release delivery system for ibuprofen as a model drug. The in vitro hydrolytic degradation of and the drug release from a film made of the PEGMA-g-PHO copolymer were carried out in a phosphate buffer saline (pH 7.4) medium. The hydrolytic degradation of the copolymer was strongly dependent on the degree of grafting (DG) of the PEGMA group. The degradation rate of the copolymer films in vitro increased with increasing DG of the PEGMA group on the PHO chain. The copolymer films showed a controlled delivery of ibuprofen to the medium in periods of time that depend on the composition, hydrophilic/hydrophobic characteristics, initial drug loading amount and film thickness of the graft copolymer support. The drug release rate from the grafted copolymer films was faster than the rate of weight loss of the films themselves. In particular, a combination of the low DG of the PEGMA group in the PHO chains with the low ibuprofen solubility in water led to long-term constant release from these matrices in vitro.  相似文献   

5.
6.
Quaternized poly(vinylpyridine) is known to kill up to 99% of drug-resistant gram-positive and -negative bacteria but shows minimal biocompatibility. We report enhanced bactericidal activity of vinylpyridine through copolymerization with hydroxyethyl methacrylate and poly(ethylene gycol) methyl ether methacrylate. Copolymers with increasing comonomer content were synthesized by radical polymerization and quaternized with hexylbromide. We assessed the effects of the changes in polymer composition on the bactericidal activity of the surface activity using a bioluminescent pathogenic strain of Escherichia coli (O157:H7). By recording the photoluminescence emitted by these bacteria in contact with the copolymers, it was shown that several of the copolymers possess better antibacterial efficiency than quaternized poly(vinylpyridine). Results indicate that several of the copolymers synthesized possess antibacterial activity approximately 20 times greater than the pure quaternized poly(vinylpyridine) homopolymer, while only containing 1 wt % hexylated pyridinium. This behavior is explained by the increased surface wettability of the copolymers containing lesser amounts of poly(vinylpyridine), as bactericidal behavior correlates to the hydrophilicity of the system as measured by contact angles. A hydrophilicity based design-paradigm can significantly improve both the efficacy and the biocompatibility of antibacterial materials.  相似文献   

7.
Huang M  Fang Y 《Biopolymers》2006,81(3):160-166
The graft copolymer chitosan-g-poly(vinyl alcohol), with nontoxicity, biodegradability, and biocompatibility, was prepared by a novel method. The copolymer with porous net structure was observed by scanning electron microscopy (SEM). It is a potential method to combine chitosan with the synthetic polymers. The grafting reactions were conducted with various poly(vinyl alcohol) (PVA)/6-O-succinate-N-phthaloyl-chitosan (PHCSSA) feed ratios to obtain chitosan-g-poly(vinyl alcohol) copolymers with various PVA contents. The chemical structure of the chitosan-g-poly(vinyl alcohol) was characterized by Fourier transform infrared and nuclear magnetic resonance (NMR) spectroscopy. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and SEM were also detected to characterize the copolymer.  相似文献   

8.
Quaternized poly(vinylpyridine) (PVP) is a polymer with inherent antimicrobial properties that is effective against Gram-positive bacteria, Gram-negative bacteria, viruses, and yeast cells. However, quaternized PVP has poor biocompatibility, which prevents its use in biomaterial applications. Copolymerization was examined as a method of modifying the structure to incorporate biocompatibility. Polyethyleneglycol methyl ether methacrylate (PEGMA) and hydroxyethyl methacrylate (HEMA) are polymers generally known to be biocompatible and thus were chosen as comonomers. Random copolymers of 4-vinylpyridine and PEGMA or HEMA were synthesized via free radical polymerization and quaternized with bromohexane. Copolymer biocompatibility was characterized by interaction with human red blood cells to analyze hemolysis. Hemolysis of human red blood cells was conducted on insoluble films and on water-soluble polymers in a serial dilution study. Hemolysis results demonstrated that blood compatibility does not depend on PEG chain length in PEGMA incorporated copolymers. Results indicate a critical weight ratio of PEGMA to VP in copolymers separating the no-hemolysis regime from 100% hemolysis.  相似文献   

9.
Glycogen phosphorylase (PHO) was demonstrated immunocytochemically and enzyme histochemically in cryostat sections of liver from rats treated for 7 weeks with N-nitrosomorpholine (120 mg/l and 200 mg/l drinking water) and from untreated controls. The activity and distribution of PHO protein were studied in normal liver and correlated with morphologically defined stages of hepatic tumour development. In normal liver the amount of enzyme protein, as visualized by the immunoperoxidase method using antibodies against phosphorylase, showed some heterogeneity within the liver lobule. The intralobular and intracellular distribution of PHO protein was the same as that of glycogen, namely coarse and granular in periportal hepatocytes and very fine in perivenular cells. In glycogen storage foci the amount of PHO protein was increased. In contrast, PHO activity was generally decreased. In other preneoplastic and neoplastic lesions such as mixed cell foci, neoplastic nodules and hepatocellular carcinomas, PHO protein was increased in all glycogen-loaded cells while PHO activity was reduced. In all glycogen-poor and basophilic cells, both PHO protein and PHO activity were decreased or absent. It was concluded that the decrease in PHO activity in glycogen storage foci was not the direct consequence of genetic changes leading to a loss in enzyme protein but was due to a defect in the cascade of phosphorylation processes resulting in active PHO. Alteration in gene expression leading to a loss of PHO protein was a late event in the process of hepatocarcinogenesis.  相似文献   

10.
Bacterial polyhydroxyalkanoate (PHA) is an attractive biopolyester for medical applications due to its biocompatibility. However, inappropriate extraction of PHA from bacterial biomass results in contamination by pyrogenic compounds (e.g. lipopolysaccharides) and thus influences medical testing. This problem was solved by a temperature-controlled method for the recovery of poly(3-hydroxyoctanoate-co-3-hydroxyhexanaote) (PHO) from Pseudomonas putida GPo1. In contrast to other methods, precipitation of PHO was triggered by cooling the hot solution to a particular temperature. N-hexane and 2-propanol were found to be optimal solvents for such procedure. Quantitative extraction with n-hexane took place at 50 degrees C and optimal precipitation occurred between 0 and 5 degrees C. The purity was >97% (w/w) and the endotoxicity between 10 and 15 EU/g PHO. Additional re-dissolution in 2-propanol at 45 degrees C and precipitation at 10 degrees C resulted in a purity of close to 100% (w/w) and the minimal endotoxicity of 2 EU/g PHO. The polydispersity (M(w)/M(n)) of PHO was decreased from 2.0 to 1.5 for this optimized procedure.  相似文献   

11.
The presence of a hydroxyl group at the end of poly(3-hydroxyoctanoate) oligomers, noted PHO oligomers, is required to prepare diblock copolymers with improved properties by ring-opening polymerization of cyclic monomer as epsilon-caprolactone. Several chemical methods such as basic hydrolysis, acid-catalyzed reaction with APTS, and methanolysis were used to prepare well-defined low molar masses PHO oligomers. The methanolysis reaction was allowed to proceed for 10-60 min to produce PHO oligomers with Mn values ranging from 20,000 to 800 g mol-1 with low polydispersity index. Detailed analysis of the MALDI-TOF mass spectra of the obtained oligomers has revealed the presence of linear structures bearing methyl ester on one side and hydroxyl end group on the other side. The same procedure was applied to poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate), PHOU, a poly(3-hydroxyalkanoate) containing unsaturated units in its side chains. These oligomers were further used to initiate the polymerization of epsilon-caprolactone by varying the PHO (or PHOU) and PCL lengths. By copolymerization with epsilon-caprolactone, the properties of PHO or PHOU have been improved. The crystallinity of the obtained copolymers was modified by controlling the length of the two different blocks. The unsaturations in the side chains of the PHOU block were oxidized in acid carboxylic functions to obtain a novel artificial biopolyester. Moreover, degradation was followed to study the influence of carboxylic groups on the hydrolysis of the copolymers.  相似文献   

12.
Phenol hydroxylase (PH) from Acinetobacter radioresistens S13 represents an example of multicomponent aromatic ring monooxygenase made up of three moieties: a reductase (PHR), an oxygenase (PHO) and a regulative component (PHI). The function of the oxygenase component (PHO), here characterized for the first time, is to bind molecular oxygen and catalyse the mono-hydroxylation of substrates (phenol, and with less efficiency, chloro- and methyl-phenol and naphthol). PHO was purified from extracts of A. radioresistens S13 cells and shown to be a dimer of 206 kDa. Each monomer is composed by three subunits: alpha (54 kDa), beta (38 kDa) and gamma (11 kDa). The gene encoding PHO alpha (named mopN) was cloned and sequenced and the corresponding amino acid sequence matched with that of functionally related oxygenases. By structural alignment with the catalytic subunits of methane monooxygenase (MMO) and alkene monooxygenase, we propose that PHO alpha contains the enzyme active site, harbouring a dinuclear iron centre Fe-O-Fe, as also suggested by spectral analysis. Conserved hydrophobic amino acids known to define the substrate recognition pocket, are also present in the alpha-subunit. The prevalence of alpha-helices (99.6%) as studied by CD confirmed the hypothized structural homologies between PHO and MMO. Three parameters (optimum ionic strength, temperature and pH) that affect kinetics of the overall phenol hydroxylase reaction were further analyzed with a fixed optimal PHR/PHI/PHO ratio of 2/1/1. The highest level of activity was evaluated between 0.075 and 0.1 m of ionic strength, the temperature dependence showed a maximum of activity at 24 degrees C and finally the pH for optimal activity was determined to be 7.5.  相似文献   

13.
Novel functionalized polymeric flocculants based on polyacrylamide grafted carboxymethylstarch (CMS-g-PAM) have been successfully synthesized via conventional method (using ceric ammonium nitrate as free radical initiator, in an inert atmosphere) as well as by using microwave irradiation (‘microwave initiated’ synthesis). Under optimal grafting conditions, 50% grafting has been observed in case of the microwave irradiation based method and 47% grafting has been observed in case of the conventional process. The synthesized graft copolymers have been characterized by elemental analysis, FTIR spectroscopy, intrinsic viscosity measurement, molecular weight determination, 13C NMR spectroscopy and scanning electron micrograph (SEM); taking carboxymethylstarch (CMS) as reference. The effects of reaction parameters onto the percentage of grafting have been studied. Further, the applicability of these grafted polymers as flocculants for the treatment of municipal sewage wastewater has also been investigated.  相似文献   

14.
Regulatory network of microRNA399 and PHO2 by systemic signaling   总被引:9,自引:1,他引:8  
Recently, we showed that microRNA399s (miR399s) control inorganic phosphate (Pi) homeostasis by regulating the expression of PHO2 encoding a ubiquitin-conjugating E2 enzyme 24. Arabidopsis (Arabidopsis thaliana) plants overexpressing miR399 or the pho2 mutant overaccumulate Pi in shoots. The association of Pi translocation and coexpression of miR399s and PHO2 in vascular tissues suggests their involvement in long-distance signaling. In this study, we used reciprocal grafting between wild-type and miR399-overexpressing transgenic plants to dissect the systemic roles of miR399 and PHO2. Arabidopsis rootstocks overexpressing miR399 showed high accumulation of Pi in the wild-type scions because of reduced PHO2 expression in the rootstocks. Although miR399 precursors or expression was not detected, we found a small but substantial amount of mature miR399 in the wild-type rootstocks grafted with transgenic scions, which indicates the movement of miR399 from shoots to roots. Suppression of PHO2 with miR399b or c was less efficient than that with miR399f. Of note, findings in grafted Arabidopsis were also discovered in grafted tobacco (Nicotiana benthamiana) plants. The analysis of the pho1 mutant provides additional support for systemic suppression of PHO2 by the movement of miR399 from Pi-depleted shoots to Pi-sufficient roots. We propose that the long-distance movement of miR399s from shoots to roots is crucial to enhance Pi uptake and translocation during the onset of Pi deficiency. Moreover, PHO2 small interfering RNAs mediated by the cleavage of miR399s may function to refine the suppression of PHO2. The regulation of miR399 and PHO2 via long-distance communication in response to Pi deficiency is discussed.  相似文献   

15.
The synthesis of thermosensitive copolymers based on pullulan and polyether amine was performed in water using a water-soluble carbodiimide and N-hydroxysuccinimide as activators. Jeffamine® M2005 was chosen as a polyether to impart thermosensitive character to the copolymer. Pullulan was modified into carboxymethylpullulan, to bring carboxylate groups to the polysaccharide so as to further the grafting reaction. The copolymers were characterized by FT-IR, 1H NMR spectroscopy and molecular weights measurements (by SEC coupled with MALS/DRI/Viscometer lines). The thermosensitive behaviour of CMP-g-M2005 copolymers was studied by fluorescence spectroscopy of pyrene, by rheometry and microDSC measurements. The sol-gel transition temperature was found dependent on the solvent, the grafting degree of M2005 and the concentration of the copolymer. For example it was 35 °C in water, 28 °C in acid buffer (0.1 M, pH 5.4) and 26 °C in saline phosphate buffer (0.15 M, pH 7.4) for a grafting degree of 0.20 at a concentration of 5 wt%.  相似文献   

16.
Poly(ethylene glycol dimethacrylate), poly(EGDMA), was grafted onto chitosan by using a redox initiation system. Chitosan-graft-poly(EGDMA) products were characterized by DSC, TGA, FTIR and XRD techniques. Chitosan-graft-poly(EGDMA) was found to be enzymatically degradable in aqueous solutions of lysozyme, lipase and a mixture of α-amylase and protease. The biocompatibility of chitosan-graft-poly(EGDMA) with 871% grafting yield was investigated by studying its cytotoxicity, sensitization, irritation, acute systemic toxicity and hemolytic activity. The results of biocompatibility experiments showed that the product can potentially be used for external intervention devices on bone and other tissue.  相似文献   

17.
Grafting of methacrylonitrile (MAN) onto dried maize starch using ceric ammonium nitrate (CAN) as an initiator has been studied gravimetrically under nitrogen atmosphere in aqueous medium. The percentage grafting is favoured by increasing monomer concentration and reaction time but is affected by higher concentration of initiator and high temperature. No grafting was observed beyond 45°C. The optimum conditions established for grafting were: [CAN]=0.002 mol/l which was added in molar nitric acid; [MAN]=0.755 mol/l; reaction time, 180 min; and temperature, 35°C. The graft copolymers were analyzed by infrared spectroscopy and acid hydrolysis. The grafting of methacrylonitrile onto starch does not alter the thermal stability of starch. The crystalline region of starch was also involved in grafting. Scanning electron microscopy showed a thick polymer coating of grafted PMAN on the starch surface.  相似文献   

18.
Metal chelate affinity precipitation (MCAP) has been successfully developed as a simple purification process for proteins that have affinity for metal ions. The present lack of widespread applications for this technique as compared to immobilized metal affinity chromatography (IMAC) may be related to the scarcity of well-characterized metal affinity macroligands (AML) and their applications to the number of different purification systems. In the present work we describe a detailed study of a new purification system using metal-loaded thermoresponsive copolymers as AML. The copolymers of vinylimidazole (VI) with N-isopropylacrylamide (NIPAM) were synthesized by radical polymerization with imidazole contents of 15 and 24 mol%. When loaded with Cu(II) and Ni(II) ions the copolymers selectively precipitated extracellularly expressed histidine-tagged single-chain Fv-antibody fragments (His(6)-scFv fragments) from the fermentation broth free from E. coli cells. Precipitation was induced by salt at mild temperatures and the bound antibody fragments were recovered by dissolving the protein-polymer complex in EDTA buffer and subsequent reprecipitation of the polymer. His(6)-scFv fragments were purified with yields of 91 and 80% and purification folds of 16 and 21 when Cu(II) and Ni(II) copolymers were used, respectively. The protein precipitation capacity of the Ni(II) copolymer showed a dependence on the VI concentration in the copolymer. The SDS-PAGE pattern showed significant purification of the antibody fragments.  相似文献   

19.
This study focuses on the solution antimicrobial effectiveness of a novel class of copolyoxetanes with quaternary ammonium and PEG-like side chains. A precursor P[(BBOx-m)(ME2Ox)] copolyoxetane was prepared by cationic ring-opening copolymerization of 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) to give random copolymers with 14-100 (m) mol % BBOx. Reaction of P[(BBOx-m)(ME2Ox)] with dodecyl dimethylamine gave the corresponding quaternary P[(C12-m)(ME2Ox)] polycation salts, designated C12-m, as viscous liquids in 100% yield. BBOx/ME2Ox and C12/ME2Ox ratios were obtained by (1)H NMR spectroscopy. C12-m molecular weights (M(n), 3.5-21.9 kDa) were obtained from (1)H NMR end group analysis. DSC studies up to 150 °C showed only thermal transitions between -69 and -34 °C assigned to T(g) values. Antibacterial activity for the C12-m copolyoxetanes was tested by determining minimum inhibitory concentrations (MICs) against Gram(+) Staphylococcus aureus and Gram(-) Escherichia coli and Pseudomonas aeruginosa . MIC decreased with increasing C12 mol percent, reaching a minimum in the range C12-43 to C12-60. Overall, the antimicrobial with consistently low MICs for the three tested pathogenic bacteria was C12-43: (bacteria, MIC, μg/mL) E. coli (6), S. aureus (5), and P. aeruginosa (33). For C12-43, minimum biocidal concentration (MBC) to reach 99.99% kill in 24 h required 1.5× MIC for S. aureus and 2× MIC for E. coli and P. aeruginosa . At 5× MIC against a challenge of 10(8) cfu/mL, C12-43 kills ≥99% S. aureus , E. coli , and P. aeruginosa within 1 h. C12-m copolyoxetane cytotoxicity toward human red blood cells was low, indicating good prospects for biocompatibility. The tunability of C12-m copolyoxetane compositions, effective antimicrobial behavior against Gram(+) and Gram(-) bacteria, and promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents.  相似文献   

20.
In this study, the grafting of nicotinic acid and p-aminobenzoic acid (PABA) onto poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) was performed by Huisgen's 1,3-dipolar cycloaddition, also known as click chemistry. Concentrations used for grafting were 0.10, 0.20, and 0.30 molar ratios with respect to caproyl units. The grafted copolymers were successfully obtained at all ratios as confirmed by NMR, GPC, and FT-IR. According to the DSC results, the polymorphisms of these grafted copolymers were mostly changed from semicrystalline to amorphous depending on the type and the amount of grafting compounds. TGA thermograms showed different thermal stabilities of the grafted copolymers compared to the original copolymers. Cytotoxicity results from HUVEC models suggested that the toxicity of grafted nanoparticles increased with the molar ratios of grafting units. Due to differences in molecular structure between nicotinic acid and PABA, physicochemical properties (particle size and surface charge) of grafted copolymer nanoparticles were substantially different. With increasing molar ratio of the grafting units, the particle size of blank nanoparticles tended to increase, resulting from an increase in the hydrophobic fragments of the grafted copolymer. Ibuprofen was chosen as a model drug to evaluate the interaction between grafted copolymers and loaded drug. After ibuprofen loading, the particle size of the loaded nanoparticles of both grafted copolymers increased compared to that of the blank nanoparticles. Significant differences in loading capacity between nicotinic acid and PABA grafted copolymer nanoparticles were clearly shown. This is most likely a result of different compatibility between each grafting compound and ibuprofen, including hydrogen bond interaction, π-π stacking interaction, and steric hindrance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号