首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
H Hchler  S P Cohen    S B Levy 《Journal of bacteriology》1991,173(17):5532-5538
Stable chromosomal multiple-antibiotic-resistant (Mar) mutants of Escherichia coli, derived by exposing susceptible cells to low concentrations of tetracycline or chloramphenicol, express cross-resistance to structurally unrelated antibiotics. The entire resistance phenotype is reversed to susceptibility by insertion of transposon Tn5 into a locus, designated marA, near 34 min on the chromosome (A. M. George and S. B. Levy, J. Bacteriol. 155:541-548, 1983). Strains in which 39 kbp of chromosomal DNA, including marA, had been deleted were unable to produce Mar mutants. The deletion strain could be complemented in trans by introduction of intact marA+ on plasmid F'506. Junction fragments from a strain containing marA::Tn5 were cloned, exploiting kanamycin resistance on Tn5 for selection. They were used as probes to search a phasmid library of E. coli K-12 for recombinants containing the marA+ region. Two phasmids which contained regions hybridizing to this probe were identified and shown to complement delta marA in a deletion strain. From one phasmid, several marA-containing fragments were cloned: those of greater than or equal to 7.8 kbp restored the ability to form Mar mutants in a deletion strain. These Mar mutants were shown to be dependent on the cloned marA fragment. Chromosomal as well as recombinant Mar mutants showed increased expression of a marA-specific mRNA species of about 1.4 kb, which was barely or not detectable in wild-type strains. Exposure of mutants and, to a lesser extent, parental strains to tetracycline or chloramphenicol resulted in elevated levels of mRNA which hybridized to the marA probe. These results indicate that the marA locus is needed for production of Mar mutants and is regulated, responding to at least two antibiotics to which it controls resistance.  相似文献   

5.
6.
We previously reported that overexpression of the soxS or robA gene causes in several Escherichia coli strains the acquisition of higher organic solvent tolerance and also increased resistance to a number of antibiotics (H. Nakajima, K. Kobayashi, M. Kobayashi, H. Asako, and R. Aono, Appl. Environ. Microbiol. 61:2302-2307, 1995). Most E. coli strains cannot grow in the presence of cyclohexane. We isolated the marRAB genes from a Kohara lambda phage clone and cyclohexane-tolerant mutant strain OST3408. We found a substitution of serine for arginine at position 73 in the coding region of marR of OST3408 and designated the gene marR08. Our genetic analysis revealed that marR08 is responsible for the cyclohexane-tolerant phenotype. We observed that the marA gene on high-copy-number plasmids increased the organic solvent tolerance of E. coli strains. Furthermore, exposure of E. coli cells to salicylate, which activates the mar regulon genes, also raised organic solvent tolerance. Overexpression of the marA, soxS, or robA gene increased resistance to numerous antibiotics but not to hydrophilic aminoglycosides.  相似文献   

7.
8.
Triclosan (Irgasan) is a broad spectrum antimicrobial agent used in handsoaps, toothpastes, fabrics, and plastics. It inhibits lipid biosynthesis in Escherichia coli , probably by action upon enoyl reductase (FabI) (McMurry L.M., Oethinger M. and Levy S.B. (1988) Nature 394, 531–532). We report here that overexpression of the multidrug efflux pump locus acrAB , or of marA or soxS , both encoding positive regulators of acrAB , decreased susceptibility to triclosan 2-fold. Deletion of the acrAB locus increased the susceptibility to triclosan approximately 10-fold. Four of five clinical E. coli strains which overexpressed marA or soxS also showed enhanced triclosan resistance. The acrAB locus was involved in the effects of triclosan upon both cell growth rate and cell lysis.  相似文献   

9.
10.
SoxRS down-regulation of rob transcription   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

11.
12.
Multiple antimicrobial resistance (MAR) in Salmonella choleraesuis is becoming a major concern. It has been demonstrated that a MAR phenotype can be induced in Escherichia coli and other members of the Enterobacteriaceae by exposing the isolates to salicylates, various antimicrobials, or organic solvents used to combat and control bacterial infection. Therefore the purpose of the present study was to determine whether this marA-associated MAR-phenotype is inducible in S. choleraesuis. Isolates used in the present study were able to withstand toxic effects of the organic solvent cyclohexane naturally, or following exposure to the inducing compounds salicylate, tetracycline, or chloramphenicol. All isolates possessed fragments of marA with the predicted size of 408 bp when amplified using marA-specific primers by PCR. The resulting PCR products that were sequenced revealed that amplified S. choleraesuis marA was 99% and 85% homologous to the published Salmonella typhimurium and E. coli marA sequences respectively. Minimum inhibitory concentrations of tetracycline (P<0.08), chloramphenicol (P<0.001), rifampin (P<0.08), and nalidixic acid (P<0.001) against cyclohexane-tolerant mutants were significantly increased when compared with wild-type S. choleraesuis. Northern hybridization signals for both marA and acrB were increased in the induced isolates when compared to uninduced controls while soxS expression did not change between induced and uninduced cultures. The results suggest that marA is present in S. choleraesuis and a MAR-phenotype is inducible in S. choleraesuis presumably due to the overexpression of marA and acrB and not to the overexpression of soxS.  相似文献   

13.
14.
In Escherichia coli K-12, amplifiable resistance to tetracycline, chloramphenicol, and other unrelated antibiotics was mediated by at least four spatially separated loci. Tetracycline-sensitive mutants were isolated by Tn5 insertional inactivation of an amplified multiply resistant strain. One of these, studied in detail, showed coordinate loss of expression of all other resistance phenotypes. The Tn5 element in this mutant mapped to 34 min on the E. coli K-12 linkage map. We have designated the locus marA (multiple antibiotic resistance). Tetracycline-sensitive mutants containing marA::Tn5 regained all resistance phenotypes at frequencies of 10(-8) to 10(-7) upon precise excision of Tn5. Moreover, a newly described tetracycline efflux system (A. M. George and S. B. Levy, J. Bacteriol. 155:531-540, 1983) was inactivated in tetracycline-sensitive mutants, but recovered in tetracycline-resistant revertants. In merodiploids, F-prime marA+ expressed partial or complete dominance over corresponding mutant chromosomal alleles. Dominance tests also established that a previously amplified host and a mutant marA allele were preconditions for the expression of phenotypic resistances.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号