首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsu YT  Lee TM 《Physiologia plantarum》2012,144(3):225-237
A gene (UfCBR) encoding carotene biosynthesis-related (CBR) protein that potentially functions for the dissipation of excessive energy has been cloned from the intertidal green macroalga Ulva fasciata Delile. Hypersalinity and high light ≥300 μmol m(-2) s(-1) increased both UfCBR mRNA level and non-photochemical quenching (NPQ). The increase of UfCBR mRNA level and NPQ by high light was inhibited by treatment of photosynthetic electron transport inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, but not by stigmatellin, an inhibitor that blocks electron transfer from quinol oxidase to iron-sulfur protein in cytochrome b(6) f complex. Treatment of dimethylthiourea, an H(2) O(2) scavenger, under 1200 μmol m(-2) s(-1) condition inhibited H(2) O(2) accumulation but did not affect UfCBR mRNA level, while treatment of H(2) O(2) in 150 μmol m(-2) s(-1) condition decreased UfCBR mRNA level. Thus, an reactive oxygen species-independent redox control via a more reduced state downstream the cytochrome b(6) f complex is involved in high light up-regulation of UfCBR expression in U. fasciata. The expression of UfCBR in U. fasciata against oxidative stress occurring in high light or high salinity in relation to NPQ is discussed.  相似文献   

2.
3.
4.
To ascertain the response of sweetpotato peroxidases (PODs) to nitric oxide (NO), we treated the leaves of sweet potato with the NO generator sodium nitroprusside (SNP) and the NO scavenger carboxyl-PTIO (cPTIO). Exogenous application of more than 5 mM SNP caused damage to sweetpotato leaves at 24 h after treatment. The accumulation of NO in leaves was positively correlated with the SNP dose. The specific activity of PODs in sweet potato leaves was markedly increased by treatment with greater than 1 mM SNP for 24 h, whereas POD activity and accumulated NO content decreased to low levels by treatment with cPTIO. Expression analysis of POD genes in response to treatment with SNP and cPTIO revealed that major stress-inducible acidic genes, such as swpa1, swpa2, swpa3, and swpa4, were specifically regulated. These results indicate that increased NO levels in sweet potato leaves are closely linked to an improved defense capability mediated by stress-inducible PODs.  相似文献   

5.
The purpose of the present study was to characterize the generation of nitric oxide (NO) in Artemisia annua roots induced by an oligosaccharide elicitor (OE) from Fusarium oxysporum mycelium and the potentiation role of NO in the elicitation of artemisinin accumulation. The OE (0.3 mg total sugar/mL) induced a rapid production of NO in cultures, which exhibited a biphasic time course, reaching the first plateau within 1.5 h and the second within 8 h of OE treatment. Artemisinin content in 20-day-old hairy roots was increased from 0.7mg/g dry wt to 1.3 mg/g dry wt by using the OE treatment for 4d. In the absence of OE, the NO donor sodium nitroprusside (SNP) at 10, 50 ~1 and 100 ~1 enhanced the growth of hairy roots, but had no effect on artemisinin synthesis, The combination of SNP with OE increased artemisinin content from 1.2 mg/g drywt to 2.2 mg/g dry wt, whereas the maximum production of artemisinin in cultures was 28.5 mg/L, a twofold increase over the OE treatment alone. The effects of SNP on the OE-induced artemisinin were suppressed strongly by the NO scavenger 2-(4- carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO). The results suggest that NO can strongly potentiate elicitor-induced artemisinin synthesis in A. annua hairy roots.  相似文献   

6.

Light management methods are considered effective to enhance the quantum yield and photosynthetic efficiency and promote the biomass and nutrient production; however, light saturation and inhibition restrain further improvement. This work studies the effect of light mixing on algal light saturation/inhibition, growth kinetics, and biochemical profile. The green alga Chlamydomonas reinhardtii was cultivated with batch culture under an LED light panel with multiple spectra options. Different combinations of blue (B) and red-orange (RO) light intensities were tested with blue light ranging from 45 to 65 μmol photons m?2 s?1 and red-orange light ranging from 45 to 205 μmol photons m?2 s?1. Results reveal that the mixed blue and red-orange light significantly improved the growth kinetics and relieved the light saturation under blue light and the light inhibition under the red-orange light. The maximum specific growth rate, biomass concentration, and productivity increased by 22, 50, and 57%, respectively, compared with the results under the red-orange light. The lipid and protein synthesis were observed to be promoted under mixed light with relatively low red-orange light intensities (45 and 105 μmol photons m?2 s?1) and repressed at high red-orange light intensities (155 and 205 μmol photons m?2 s?1). The carbohydrate content did not change.

  相似文献   

7.
Nitrate reductase (NR), a committed enzyme in nitrate assimilation, involves generation of nitric oxide (NO) in plants. Here we show that the NR activity was significantly enhanced by the addition of NO donors sodium nitroprusside (SNP) and NONOate (diethylamine NONOate sodium) to the culturing solution, whereas it was decreased by NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, both NO gas and SNP directly enhanced but cPTIO inhibited the NR activities of crude enzyme extracts and purified NR enzyme. The cPTIO terminated the interaction between NR-generated NO and the NR itself. Furthermore, the NR protein content was not affected by the SNP treatment. The investigation of the partial reactions catalysed by purified NR using various electron donors and acceptors indicated that the haem and molybdenum centres in NR were the two sites activated by NO. The results suggest that the activation of NR activity by NO is regulated at the post-translational level, probably via a direct interaction mechanism. Accordingly, the concentration of nitrate both in leaves and roots was decreased after 2 weeks of cultivation with SNP. The present study identifies a new mechanism of NR regulation and nitrate assimilation, which provides important new insights into the complex regulation of N-metabolism in plants.  相似文献   

8.
Xu LL  Lai YL  Wang L  Liu XZ 《Fungal biology》2011,115(2):97-101
The in vitro effects of abscisic acid (ABA) and nitric oxide (NO) on the nematode-trapping fungus Drechslerella stenobrocha AS6.1 were examined. The average number of traps (constricting rings) per colony and the percentage of nematodes (Caenorhabditis elegans) trapped were greatly increased by addition of ABA but greatly suppressed by addition of sodium nitroprusside (SNP, an NO donor) to corn meal agar. The suppressive effect of SNP was not negated by addition of an NO synthase competitive inhibitor (l-naphthylacetic acid, L-NNA) or an NO-specific scavenger [2-(4-carboxyphenyl)-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide, cPTIO]. When added without SNP, however, L-NNA and cPTIO caused moderate increases in trap number and trapping. The results indicate that the trap formation and nematode-trapping ability of D. stenobrocha were enhanced by ABA but decreased by exogenous NO.  相似文献   

9.
The role of nitric oxide (NO) and the relationship between NO and cytosolic pH during inhibition of ABA effect by fusicoccin (FC) in guard cells of Vicia faba were analyzed. ABA induced NO generation and stomatal closure, but FC inhibited the effects of ABA. Treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetra-methylimidazoline-1-oxyl-3-oxide (cPTIO) and NG-nitro-L-Arg-methyl ester (L-NAME) mimicked the effects of FC. These data suggest that inhibition of ABA effect by FC is possibly related to the decreasing in the NO level. Furthermore, like cPTIO, FC not only suppressed stomatal closure and NO level in guard cells treated with NO donor sodium nitroprusside (SNP), but also reopened stomata, which had been closed by ABA, and reduced the level of NO in guard cells that had been produced by ABA, indicating that FC caused NO removal. Butyric acid simulated the effects of FC on the stomatal aperture and increased NO levels in guard cells treated with SNP and had been closed by ABA, and both FC and butyric acid surely reduced cytosolic pH, which demonstrates that cytosolic acidification mediates FC-induced NO removal. Taken together, our results show that FC induces NO removal and reduces NO level via cytosolic acidification in guard cells, thus inhibiting ABA effect.  相似文献   

10.
Mature seeds of apple (Mallus domestica Borb. cv. Antonówka) are dormant and do not germinate unless their dormancy is removed by several weeks of moist-cold treatment. We investigated the effect of short-term (3 h) nitric oxide (NO) pretreatment on breaking of apple embryonic dormancy expressed as inhibition of germination and morphological abnormalities of young seedlings. Imbibition of embryos isolated from dormant apple seeds with sodium nitroprusside (SNP) or S-nitroso,N-acetyl penicillamine (SNAP) as NO donors resulted in enhanced germination. Moreover, NO treatment removed morphological abnormalities of seedlings developing from dormant embryo. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-1-oxyl-3 oxide (cPTIO) removed the above effects. NO-mediated breaking of embryonic dormancy correlated well with enhanced ethylene production. Inhibitor of ethylene synthesis (AOA) reversed the stimulatory effect of NO donors on embryo germination. Additionally SNP reduced embryo sensitivity to exogenously applied ABA ensuing dormancy breakage. We can conclude that NO acts as a regulatory factor included in the control of apple embryonic dormancy breakage by stimulation of ethylene biosynthesis.  相似文献   

11.
Nitric oxide (NO), a key molecule in inter- and intracellular signalling, is implicated in developmental processes, host defense, and apoptosis in higher plants. We investigated the effect of NO on development in the unicellular green alga, Micrasterias denticulata, using two different NO donors, S-nitroso-N-acetyl-dl-penicillamine (SNAP) and sodium nitroprusside (SNP). Investigations at the light microsopic level revealed that both NO donors suppressed cell growth. Ultrastructural analyses were performed with SNAP- as well as SNP-treated cells and, additionally, with the control compound N-acetyl-d-penicillamine (NAP). Cells incubated with NO donors lacked a secondary wall and dictyosomal function was impaired, whereas NAP-treated cells showed no difference in development and organelle structure compared to control cells. Moreover, cisternae of the Golgi stacks were slightly involute and no vesicles were pinched off after SNAP and SNP incubation. The NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, potassium salt) abrogated the effect of SNP, thus confirming that inhibition of cell growth is due to nitric oxide. Addition of iodoacetic acid, an inhibitor of cysteine-containing enzymes, like glyceraldehyde-3-phosphate dehydrogenase (GAPDH), evoked similar effects on cell growth and secondary wall formation as obtained by treatment with NO donors. Therefore, we hypothesize that NO inhibits activity of enzymes involved in the secretory pathway, such as GAPDH, via S-nitrosylation of the cysteine residue and, consequently, modulates cell growth in M. denticulata.  相似文献   

12.
Cadmium (Cd) is toxic to crown roots (CR), which are essential for maintaining normal growth and development in rice seedlings. Nitric oxide (NO) is an important signaling molecule that plays a pivotal role in plant root organogenesis. Here, the effects of Cd on endogenous NO content and root growth conditions were studied in rice seedlings. Results showed that similar to the NO scavenger, cPTIO, Cd significantly decreased endogenous NO content and CR number in rice seedlings, and these decreases were recoverable with the application of sodium nitroprusside (SNP, a NO donor). Microscopic analysis of root collars revealed that treatment with Cd and cPTIO inhibited CR primordia initiation. In contrast, although SNP partially recovered Cd-caused inhibition of CR elongation, treatment with cPTIO had no effect on CR elongation. l-NMMA, a widely used nitric oxide synthase (NOS) inhibitor, decreased endogenous NO content and CR number significantly, while tungstate, a nitrate reductase (NR) inhibitor, had no effect on endogenous NO content and CR number. Moreover, enzyme activity assays indicated that treatment with SNP inhibited NOS activity significantly, but had no effect on NR activity. All these results support the conclusions that a critical endogenous NO concentration is indispensable for rice CR primordia initiation rather than elongation, NOS is the main source for endogenous NO generation, and Cd decreases CR number by inhibiting NOS activity and thus decreasing endogenous NO content in rice seedlings.  相似文献   

13.
Chen YH  Kao CH 《Protoplasma》2012,249(1):187-195
In the present study, the role of nitric oxide (NO) in the regulation of lateral root (LR) formation in rice was examined. Application of sodium nitroprusside (SNP; a NO donor) and indole-3-butyric acid (IBA; a naturally occurring auxin) to rice seedlings induced LR formation. The effect is specific for NO because the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide (cPTIO) blocked the action of SNP and IBA. Endogenous NO was detected by the specific fluorescence probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate. SNP- and IBA-induced NO fluorescence was specifically suppressed by cPTIO. Nitrate reductase (NR) inhibitor sodium tungstate completely inhibited IBA-induced LR formation and NO fluorescence. However, nitric oxide synthase inhibitor N G-nitro-l-arginine methyl ester hydrochloride slightly reduced IBA-induced LR formation and NO generation. It appears that NO generation that occurs in response to IBA might primarily involve NR activity. Moreover, NO production caused by SNP and IBA was localized in root area corresponding to LR emergence. The effects of Ca2+ chelators, Ca2+-channel inhibitors, and calmodulin antagonists on LR formation induced by SNP and IBA were also examined. All these inhibitors were effective in reducing the action of SNP and IBA. However, Ca2+ chelators and Ca2+-channel inhibitors had no effect on SNP- and IBA-induced NO generation. It is concluded that cytosolic levels of Ca2+ may regulate SNP and IBA action through calmodulin-dependent mechanism.  相似文献   

14.
15.
Zhang H  Zhao X  Yang J  Yin H  Wang W  Lu H  Du Y 《Plant cell reports》2011,30(6):1153-1162
Chitooligosaccharide (COS) or oligochitosan has been shown to induce tobacco defense responses which are connected with nitric oxide (NO) and OIPK (oligochitosan-induced Ser/Thr protein kinase). The aim of this study was to reveal the relationship between NO production and OIPK pathway in the defense response of tobacco elicited by COS. NO generation was investigated by epidermal strip bioassay and fluorophore microscope using fluorophore diaminofluorescein diacetate (DAF-2DA). Tobacco epidermal cells treated with COS resulted in production of NO, which was first present in chloroplast, then in nucleus, finally in the whole cell; this NO production was sensitive to NO scavenger cPTIO and the mammalian NO synthase (NOS) inhibitor l-NAME, suggesting that NOS-like enzyme maybe involved in NO generation in tobacco epidermal cells. However, NOS and nitrate reductase (NR, EC 1.6.6.1) inhibitors reduced NO content in tobacco leaves by using NO Assay Kit, suggesting both NOS and NR were involved in NO production in tobacco leaves. Using a pharmacological approach and western blotting, we provide evidence that NO acts upstream of OIPK expression. NO scavenger, NOS inhibitor partly blocked the activation of OIPK and the activities of several defense-related enzymes induced by COS; treatment with NO donor sodium nitroprusside (SNP) induced the activation of OIPK and enhanced the defense systems. The results suggest that COS is able to induce NO generation, which results in up-regulation the activities of some defense-related enzymes through an OIPK-dependent or independent pathway.  相似文献   

16.
以玉米幼苗为材料,通过在镉处理的同时补充外源一氧化氮(NO)供体硝普钠(SNP)及其类似物[K3Fe(CN)6]、以及NO消除剂,分析NO对植物耐镉性的影响,探讨NO在植物逆境胁迫响应中的作用及其机理。结果显示:添加20μmol·L-1 SNP能显著降低镉引发的玉米幼苗根生长抑制及根尖内源镉的积累,减少电解质的渗漏以及超氧化物自由基(O2.-)和过氧化氢(H2O2)的上升幅度,抑制超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性的增加,进一步提高镉胁迫下谷胱甘肽还原酶(GR)的活性。SNP的上述效应可被NO消除剂2-(4-羧基-2-苯基)-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)所逆转,而SNP类似物K3Fe(CN)6的应用对上述反应几乎无影响,说明该反应具有NO特异性。研究表明,外源NO能够显著缓解镉胁迫对玉米幼苗生长造成的伤害,该缓解作用主要是通过降低植株体内内源镉积累和减轻镉诱发的氧化伤害来实现的。  相似文献   

17.
Seed germination is sensitive to glucose (Glc), nitric oxide (NO) and polyamine (PA). To elucidate whether cross-talk among Glc, NO and PAs occurs in mediation of seed germination, effects of Glc, NO and spermine on seed germination of Lotus japonicus were studied. Glc retarded seed germination in a concentration-dependent manner. NO donor sodium nitroprusside (SNP) alleviated Glc-induced inhibition of seed germination, whereas the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO) diminished the SNP-dependent alleviation of seed germination. These observations indicate that Glc may inhibit seed germination by interacting with NO signaling pathways. Exogenous spermine enhanced and the inhibitor of the spermine synthase, methylglyoxal-bis-guanyl hydrazone (MGBG), inhibited seed germination, respectively. Like SNP, spermine alleviated the Glc-induced inhibition of seed germination, whereas MGBG exaggerated the Glc-induced inhibition of seed germination. These results suggest that Glc may inhibit the spermine synthesis, leading to reductions in seed germination. NO scavenger and spermine synthase inhibitor diminished the SNP-induced alleviation of Glc-induced inhibition of seed germination. These findings reveal that both NO and spermine participate in the Glc-induced inhibition of seed germination in L. japonicus.  相似文献   

18.
19.
High temperature is one of the major impediments limiting the growth and development of most edible fungi. While many efforts have been made in agricultural practice, the mechanism for resistance to high temperature remains elusive. Nitric oxide (NO) is considered as a signaling molecule involved in regulation of diverse physiological processes and stress responses in animals and plants. However, the role of NO in regulating fungal, particularly edible fungi, response to abiotic stresses, is unknown. The present study demonstrated that NO could effectively alleviate oxidative damage induced by heat stress in mycelia of Pleurotus eryngii var. tuoliensis. Heat stress induced increased thiobarbituric acid reactive substance (TBARS) content in mycelia, and the NO donor sodium nitroprusside (SNP) dramatically decreased TBARS content under high temperature. Moreover, the specific NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide (cPTIO), could arrest the SNP action under the stress. Heat stress induced an increase in endogenous NO production in mycelial cells. However, the effect was significantly blocked by the NO synthase (NOS) inhibitor l-N(G)-nitroarginine methyl ester (l-NAME). In contrast, nitrate reductase (NR) activities were not obviously altered during heat stress. The NR suppressor tungstate had no effect on intracellular NO abundance under heat stress. These results suggest that NO can effectively protect mycelia of edible fungi from heat stress-induced oxidative damage and the NOS-dependent NO production may participate in the response to heat stress.  相似文献   

20.
NO和H2O2在光/暗调控蚕豆气孔运动中的作用及其相互关系   总被引:10,自引:0,他引:10  
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H_2O_2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索。结果显示,光下外源NO供体硝普钠(SNP)和H_2O_2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂N~G-氮-L-精氨酸-甲酯(L-NAME)和H_2O_2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H_2O_2水平比暗中明显降低。上述结果表明,光/暗通过影响保卫细胞NO和H_2O_2的水平调控气孔运动。研究还发现,光下H_2O_2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H_2O_2的这些效应;光下SNP既诱导H_2O_2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转。这些结果表明,NO和H_2O_2在生成及效应上均存在明显的相互作用。另外,L-NAME显著逆转暗和光下H_2O_2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H_2O_2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号