首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC''s antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether–containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,β-dehydro-amino acid intermediate during Cα-thioether bridge LC–MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation.  相似文献   

2.
In the cuttlefish, Sepia officinalis, the ovary appears to be one of the main sources of regulatory peptides involved in the successive steps of egg-laying. Following the identification of the SepCRP-1, which is a peptide extracted from ovary and involved in egg capsule secretion, investigations were focused on the identification of related peptides. Seven related-Sepia Capsule Releasing Peptides (R-SepCRPs) were identified by means of mass spectrometry and characterized using MS/MS spectra and/or Edman degradation. Finally, primary structures were verified by the comparison of MS/MS spectra from endogenic and synthetic peptides. This new ovarian peptide family exhibits a conserved SLXKD tag involved in the biological activity. LC-MS/MS screening clearly demonstrates that R-SepCRPs are restricted to the female genital tract. Expressed during vitellogenesis, they are released by vitellogenic follicles and full-grown oocytes (FGO) in the genital coelom. Biological activities suggest that R-SepCRPs would be responsible for the storage of FGO before mating and would take part in the mechanical secretion of egg capsule products, as previously described for SepCRP-1.  相似文献   

3.
Pseudomonas aeruginosa has eventually developed resistance against flomoxef sodium, isepamicin and cefpiramide. Therefore, in this study, the antibacterial activity and synergistic effects of the amphipathic-derived P5-18mer antimicrobial peptide were tested against pathogens associated with cholelithiasis that have developed resistance against commonly used antibiotics. The results were then compared with the activities of the amphipathic-derived peptide, P5-18mer, melittin and common antibiotics. Growth inhibition of planktonic bacteria was tested using the National Committee for Clinical Laboratory Standards (NCCLS). The bactericidal activity of the antimicrobial peptides was measured using time-kill curves. Synergistic effects were evaluated by testing the effects of P5-18mer alone and in combination with flomoxef sodium, isepamicin or cefpiramide at 0.5 × MIC. P5-18mer peptide displayed strong activity against pathogens and flomoxef sodium, isepamicin and cefpiramide-resistant bacteria cell lines obtained from a patient with gallstones; however, it did not exert cytotoxicity against the human keratinocyte HaCat cell line. In addition, the results of time-kill curves indicated that P5-18mer peptide exerted bactericidal activity against four strains of P. aeruginosa. Finally, the use of P5-18mer and antibiotics exerted synergistic effects against cell lines that were resistant to commonly used antibiotics. These results indicate that this class of peptides has a rapid microbicidal effect on flomoxef sodium, isepamicin and cefpiramide-resistant strains of P. aeruginosa. Therefore, these peptides may be used as a lead drug for the treatment of acquired pathogens from patients with cholelithiasis who are affected with antibiotic-resistant bacteria.  相似文献   

4.
Most human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies in infected individuals and in immunized animals are directed against the third variable loop (V3) of the envelope glycoprotein (gp120) of the virus. This loop plays a crucial role in phenotypic determination, cytopathicity (syncytium induction), and coreceptor usage of HIV-1. The human monoclonal antibody 447-52D was found to neutralize a broad spectrum of HIV-1 strains. In order to solve the solution structure of the V3MN peptide bound to the 447-52D Fab fragment by NMR, large quantities of labeled peptide and a protocol for the purification of the Fab fragment were needed. An expression plasmid coding for the 23-residue V3 peptide of the HIV-1MN strain (V3MN peptide, YNKRKRIHIGPGRAFYTTKNIIG) linked to a derivative of the RNA-binding domain of hnRNCP1 was constructed. The fusion protein attached to the V3 peptide prevents its degradation. Using this system, U-15N, U-13C,15N, and U-13C,15N, 50% 2H labeled fusion protein molecules were expressed in Escherichia coli grown on rich Celtone medium with yields of about 240 mg/liter. The V3MN peptide was released by CNBr cleavage and purified by RP-HPLC, giving final yields of 6-13 mg/liter. This expression system is generally applicable for biosynthesis of V3-related peptides and was also used to prepare the V3JR-FL. The 447-52D Fab fragment was obtained by a short enzymatic papain cleavage of the whole antibody. Preliminary NMR spectra demonstrate that full structural analysis of the V3MN complexed to the 447-52D Fab is feasible. This system enables studies of the same epitope bound to different HIV-1 neutralizing antibodies.  相似文献   

5.
Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics.  相似文献   

6.
Zhao R  Dai H  Qiu S  Li T  He Y  Ma Y  Chen Z  Wu Y  Li W  Cao Z 《PloS one》2011,6(11):e27548

Background

Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized.

Principal Findings

A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (Ki = 1.6×10−7 M) and thermostability.

Conclusions

The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived from scorpion venom, and it represents a new class of Kunitz-type venom peptides.  相似文献   

7.
This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides.  相似文献   

8.
Snakin‐1 (SN‐1) is a cysteine‐rich plant antimicrobial peptide and the first purified member of the snakin family. SN‐1 shows potent activity against a wide range of microorganisms, and thus has great biotechnological potential as an antimicrobial agent. Here, we produced recombinant SN‐1 in Escherichia coli by a previously developed coexpression method using an aggregation‐prone partner protein. Our goal was to increase the productivity of SN‐1 via the enhanced formation of insoluble inclusion bodies in E. coli cells. The yield of SN‐1 by the coexpression method was better than that by direct expression in E. coli cells. After refolding and purification, we obtained several milligrams of functionally active SN‐1, the identity of which was verified by MALDI‐TOF MS and NMR studies. The purified recombinant SN‐1 showed effective antimicrobial activity against test organisms. Our studies indicate that the coexpression method using an aggregation‐prone partner protein can serve as a suitable expression system for the efficient production of functionally active SN‐1. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1520–1528, 2017  相似文献   

9.
Amphibian skin has proved repeatedly to be a largely untapped source of bioactive peptides and this is especially true of members of the Phyllomedusinae subfamily of frogs native to South and Central America. Tryptophyllins are a group of peptides mainly found in the skin of members of this genus. In this study, a novel tryptophyllin (TPH) type 3 peptide, named AcT-3, has been isolated and structurally-characterised from the skin secretion and lyophilised skin extract of the red-eye leaf frog, Agalychnis callidryas. The peptide was identified in and purified from the skin secretion by reverse-phase HPLC. MALDI-TOF mass spectrometry and MS/MS fragmentation sequencing established its primary structure as: pGlu-Gly-Lys-Pro-Tyr-Trp-Pro-Pro-Pro-Phe-Leu-Pro-Glu, with a non-protonated molecular mass of 1538.19Da. The mature peptide possessed the canonical N-terminal pGlu residue that arises from post-translational modification of a Gln residue. The deduced open-reading frame consisted of 63 amino acid residues encoding a highly-conserved signal peptide of approximately 22 amino acid residues, an intervening acidic spacer peptide domain, a single AcT-3 encoding domain and a C terminal processing site. A synthetic replicate of AcT-3 was found to antagonise the effect of BK on rat tail artery smooth muscle and to contract the intestinal smooth muscle preparations. It was also found that AcT-3 could dose-dependently inhibit the proliferation of human prostate cancer cell lines after 72h incubation.  相似文献   

10.
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner.  相似文献   

11.
Statherin is a multifunctional polypeptide specific of human saliva involved in oral calcium homeostasis, phosphate buffering and formation of protein networks. Salivary P-B peptide is usually included into the basic proline-rich protein family but it shows some similarities with statherin and its specific biological role is still undefined. In this study, various fragments and derivatives of statherin and P-B peptide were consistently detected by RP-HPLC ESI-IT MS in 23 samples of human saliva. They were: statherin mono- and non-phosphorylated, statherin Des-Phe(43) (statherin SV1), statherin Des-Thr(42),Phe(43), statherin Des-Asp(1), statherin Des(6-15) (statherin SV2), statherin Des(1-9), statherin Des(1-10), statherin Des(1-13) and P-B Des(1-5). Statherin SV3 (statherin Des(6-15), Phe(43)) was detected only in one sample. Identity of the fragments was confirmed either by MS/MS experiments or by enzymatic digestion or by Edman sequencing. Detection of the fragments suggests that statherin and P-B peptide are submitted to post-translational proteolytic cleavages that are common to other classes of salivary proteins.  相似文献   

12.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

13.
Sea anemones are a rich source of two classes of peptide toxins, sodium channel toxins and potassium channel toxins, which have been or will be useful tools for studying the structure and function of specific ion channels. Most of the known sodium channel toxins delay channel inactivation by binding to the receptor site 3 and most of the known potassium channel toxins selectively inhibit Kv1 channels. The following peptide toxins are functionally unique among the known sodium or potassium channel toxins: APETx2, which inhibits acid-sensing ion channels in sensory neurons; BDS-I and II, which show selectivity for Kv3.4 channels and APETx1, which inhibits human ether-a-go-go-related gene potassium channels. In addition, structurally novel peptide toxins, such as an epidermal growth factor (EGF)-like toxin (gigantoxin I), have also been isolated from some sea anemones although their functions remain to be clarified.  相似文献   

14.
Functional modification of protein through N-terminal acetylation is common in eukaryotes but rare in prokaryotes. Prothymosin α is an essential protein in immune stimulation and apoptosis regulation. The protein is N-terminal acetylated in eukaryotes, but similar modification has never been found in recombinant protein produced in prokaryotes. In this study, two mass components of recombinant human prothymosin α expressed in Escherichia coli were identified and separated by RP-HPLC. Mass spectrometry of the two components showed that one of them had a 42 Da mass increment as compared with the theoretical mass of human prothymosin α, which suggested a modification of acetylation. The mass of another one was equal to that of the theoretical one. Peptides mass spectrometry of the modified component showed that the 42-Da mass increment occurred in the N-terminal peptide domain, and MS/MS peptide sequencing of the N-terminal peptide found that the acetylated modification occurred at the N-terminal serine residue. So, part of the recombinant human prothymosin α produced by E. coli was N-terminal acetylated. This finding adds a new clue for the mechanism of acetylated modification in prokaryotes, and also suggested a new method for production of N-terminal modificated prothymosin α and thymosin α1.  相似文献   

15.
Bioassay-guided fractionation of cytotoxic of methanol extract of the seeds of Annona cherimola provided two novel cyclic peptides, cherimolacyclopeptide E (1) and cherimolacyclopeptide F (2), which exhibited significant cytotoxic activity against the KB (human nasopharyngeal carcinoma) cell culture system. The peptide 1 and 2 were elucidated by MS/MS fragmentation experiments using a Q-TOF mass spectrometer equipped with an ESI source, extensive 2D NMR analyses and chemical degradation.  相似文献   

16.
17.

Background

Known linear knottins are unsuitable as scaffolds for oral peptide drug due to their gastrointestinal instability. Herein, a new subclass of knottin peptides from Porifera is structurally described and characterized regarding their potential for oral peptide drug development.

Methods

Asteropsins B–D (ASPB, ASPC, and ASPD) were isolated from the marine sponge Asteropus sp. The tertiary structures of ASPB and ASPC were determined by solution NMR spectroscopy and that of ASPD by homology modeling.

Results

The isolated asteropsins B–D, together with the previously reported asteropsin A (ASPA), compose a new subclass of knottins that share a highly conserved structural framework and remarkable stability against the enzymes in gastrointestinal tract (chymotrypsin, elastase, pepsin, and trypsin) and human plasma.

Conclusion

Asteropsins can be considered as promising peptide scaffolds for oral bioavailability.

General significance

The structural details of asteropsins provide essential information for the engineering of orally bioavailable peptides.  相似文献   

18.
Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV1.x, while others do not. Mutagenesis studies have shown that a Lys–Tyr (KY) dyad plays a key role in KV1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.  相似文献   

19.
La1 is a 73‐residue cysteine‐rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N‐acylurea approach with Fmoc‐SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Arenicin-1 is a 21-residue peptide which was derived from Arenicola marina. In this study, we investigated the antifungal effects and its mechanism of action towards human pathogenic fungi. Arenicin-1 exerted remarkable fungicidal activity with both energy-dependent and salt-insensitive manners. To investigate the fungicidal mechanisms of arenicin-1, the membrane interactions of arenicin-1 were examined. Flow cytometric analysis, using propidium iodide (PI) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], as well as fluorescence analysis, regarding the membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH), were conducted against Candida albicans. The results demonstrated that arenicin-1 was associated with lipid bilayers and induced membrane permeabilization. Additionally, the membrane studies in regard to liposomes resembling the phospholipid bilayer of C. albicans confirmed the membrane-disruptive potency of arenicin-1. Therefore, the present study suggests that arenicin-1 exerts its fungicidal effect by disrupting fungal phospholipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号