共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kurihara K Nakanishi N Moore-Hoon ML Turner RJ 《American journal of physiology. Cell physiology》2002,282(4):C817-C823
Westudied the phosphorylation of the secretoryNa+-K+-2Cl cotransporter (NKCC1)in rat parotid acinar cells. We have previously shown that NKCC1activity in these cells is dramatically upregulated in response to-adrenergic stimulation and that this upregulation correlates withNKCC1 phosphorylation, possibly due to protein kinase A (PKA). We showhere that when ATP is added to purified acinar basolateral membranes(BLM), NKCC1 is phosphorylated as a result of membrane-associatedprotein kinase activity. Additional NKCC1 phosphorylation is seen whenPKA is added to BLMs, but our data indicate that this is due to aneffect of PKA on endogenous membrane kinase or phosphatase activities,rather than its direct phosphorylation of NKCC1. Also, phosphopeptidemapping demonstrates that these phosphorylations do not take place atthe site associated with the upregulation of NKCC1 by -adrenergicstimulation. However, this upregulatory phosphorylation can be mimickedby the addition of cAMP to permeabilized acini, and this effect can beblocked by a specific PKA inhibitor. These latter results provide good evidence that PKA is indeed involved in the upregulatoryphosphorylation of NKCC1 and suggest that an additional factor presentin the acinar cell but absent from isolated membranes is required to bring about the phosphorylation. 相似文献
3.
4.
Pelis RM Zydlewski J McCormick SD 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,280(6):R1844-R1852
Na(+)-K(+)-2Cl(-) cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na(+)-K(+)-2Cl(-) cotransporter was colocalized with Na(+)-K(+)-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na(+)-K(+)-2Cl(-) cotransporter abundance, large and numerous Na(+)-K(+)-2Cl(-) cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na(+)-K(+)-2Cl(-) cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na(+)-K(+)-ATPase activity and Na(+)-K(+)-2Cl(-) cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na(+)-K(+)-2Cl(-) cotransporter in salt secretion by gill chloride cells of teleost fish. 相似文献
5.
6.
Dynamic regulation of Na(+)-K(+)-2Cl(-) cotransporter surface expression by PKC-{epsilon} in Cl(-)--secretory epithelia 总被引:1,自引:0,他引:1
Del Castillo IC Fedor-Chaiken M Song JC Starlinger V Yoo J Matlin KS Matthews JB 《American journal of physiology. Cell physiology》2005,289(5):C1332-C1342
In secretory epithelia, activation of PKC by phorbol ester and carbachol negatively regulates Cl secretion, the transport event of secretory diarrhea. Previous studies have implicated the basolateral Na+-K+-2Cl cotransporter (NKCC1) as a target of PKC-dependent inhibition of Cl secretion. In the present study, we examined the regulation of surface expression of NKCC1 in response to the activation of PKC. Treatment of confluent T84 intestinal epithelial cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (PMA) reduced the amount of NKCC1 accessible to basolateral surface biotinylation. Loss of cell surface NKCC1 was due to internalization as shown by 1) the resistance of biotinylated NKCC1 to surface biotin stripping after incubation with PMA and 2) indirect immunofluorescent labeling. PMA-induced internalization of NKCC1 is dependent on the -isoform of PKC as determined on the basis of sensitivity to a panel of PKC inhibitors. The effect of PMA on surface expression of NKCC1 was specific because PMA did not significantly alter the amount of Na+-K+-ATPase or E-cadherin available for surface biotinylation. After extended PMA exposure (>2 h), NKCC1 became degraded in a proteasome-dependent fashion. Like PMA, carbachol reduced the amount of NKCC1 accessible to basolateral surface biotinylation in a PKC--dependent manner. However, long-term exposure to carbachol did not result in degradation of NKCC1; rather, NKCC1 that was internalized after exposure to carbachol was recycled back to the cell membrane. PKC--dependent alteration of NKCC1 surface expression represents a novel mechanism for regulating Cl secretion. endocytosis; recycling; ion transporters 相似文献
7.
Wang YE Pernet O Lee B 《Biology of the cell / under the auspices of the European Cell Biology Organization》2012,104(3):121-138
Nucleocytoplasmic trafficking of many cellular proteins is regulated by nuclear import/export signals as well as post-translational modifications such as covalent conjugation of ubiquitin and small ubiquitin-related modifiers (SUMOs). Ubiquitination and SUMOylation are rapid and reversible ways to modulate the intracellular localisation and function of substrate proteins. These pathways have been co-opted by some viruses, which depend on the host cell machinery to transport their proteins in and out of the nucleus. In this review, we will summarise our current knowledge on the ubiquitin/SUMO-regulated nuclear/subnuclear trafficking of cellular proteins and describe examples of viral exploitation of these pathways. 相似文献
8.
Meyer JW Flagella M Sutliff RL Lorenz JN Nieman ML Weber CS Paul RJ Shull GE 《American journal of physiology. Heart and circulatory physiology》2002,283(5):H1846-H1855
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly lower systolic blood pressure than wild-type (Nkcc1(+/+)) mice (114.5 +/- 2.2 and 131.8 +/- 2.5 mmHg, respectively). Serum aldosterone levels were normal, indicating that extracellular fluid-volume homeostasis was not impaired. Studies using pressure transducers in the femoral artery and left ventricle showed that anesthetized Nkcc1(-/-) mice have decreased mean arterial pressure and left ventricular pressure, whereas myocardial contraction parameters were not significantly different from those of Nkcc1(+/+) mice. When stimulated with phenylephrine, aortic smooth muscle from Nkcc1(+/+) and Nkcc1(-/-) mice exhibited no significant differences in maximum contractility and only moderate dose-response shifts. In phasic portal vein smooth muscle from Nkcc1(-/-) mice, however, a sharp reduction in mechanical force was noted. These results indicate that NKCC1 can be important for the maintenance of normal blood pressure and vascular tone. 相似文献
9.
The "secretory" Na(+)-K(+)-2Cl(-) cotransporter, NKCC1, belongs to the SLC12 gene family of electroneutral cation-chloride cotransporters. A number of these proteins, including NKCC1 itself, exist as homodimers in the membrane, suggesting that this may be a common feature of the SLC12 family. We have previously demonstrated that replacing the C-terminus of NKCC1 with that of its close homologue NKCC2 produced a fully functional chimeric protein that formed homodimers but did not dimerize with NKCC1. Here we employ a novel co-immunoprecipitation assay to study the dimerization interaction of NKCC1 using additional NKCC1/NKCC2 C-terminal chimeras and point mutants. Our results indicate that the substitution of a number of regions of the C-terminus of NKCC1 with the corresponding sequence from NKCC2 results in weakened dimerization with wild-type NKCC1, demonstrating that various residues play a role in this interaction. Most interestingly, however, we find that the replacement of a single NKCC1 residue, G812, with cysteine, the corresponding amino acid in NKCC2, results in a point mutant that displays no significant dimerization with the wild-type protein. In addition to this effect on heterodimer formation, we also find that G812 mutants can nevertheless form homodimers but that this interaction can be weaker than that observed for wild-type NKCC1. We demonstrate that our results are consistent with at least one established mechanism of protein dimer formation, that of "domain swapping", as well as with a recently reported crystal structure of the C-terminus of a bacterial SLC12 homologue. 相似文献
10.
The "secretory" Na+-K+-2Cl- cotransporter, NKCC1, is a member of a small gene family of electroneutral cation-chloride cotransporters (CCCs) with 9 homologues in vertebrates. A number of these transporters, including NKCC1 itself, have been shown to exist as homodimers in the membrane, suggesting that this may be a common feature of the CCCs. Here we employ chemical cross-linking studies, a novel co-immunoprecipition assay, and NKCC1/CCC chimeras to further explore the basis and significance of NKCC1 dimerization. An N-terminally truncated NKCC1 (nttNKCC1), in which the first 20 kDa of the 28 kDa cytosolic N-terminus are deleted, forms homodimers as well as heterodimers with full-length NKCC1, indicating that this region of N-terminus is not required for dimerization. On the other hand, replacing the 50 kDa NKCC1 C-terminus with that of several other non-NKCC1 homologues results in chimeric proteins that form homodimers but show little or no heterodimerization with NKCC1, demonstrating that the C-terminus of NKCC1 plays an essential role in dimerization and that NKCC1 dimerization exhibits definite homologue-specificity. Using additional chimeras we find that the residues required for dimer formation lie between amino acids 751 and 998 of (rat) NKCC1. We also show that dramatically overexpressing the nonfunctional truncated protein nttNKCC1 relative to the endogenous NKCC1 in the HEK293 cells results in a modest inhibition of fluxes via the endogenous transporter and a change in its sensitivity to the specific inhibitor bumetanide. These latter results indicate that there is a functional interaction between dimer subunits but that nonfunctional subunits do not necessarily have a dominant negative effect as has been previously proposed. 相似文献
11.
In mammalian cells, Na(+)-K(+)-2Cl- cotransporter activity participates in regulation of ion and volume homeostasis. This makes NKCC indispensable for normal cell growth and proliferation. We recently reported the existence of two mechanisms that can regulate NKCC activity in mature skeletal muscle. In isosmotic conditions, signaling through ERK MAPK pathway is necessary, while inhibition of the cAMP-dependent protein kinase A (PKA) pathway stimulates NKCC activity during hyperosmotic challenge. Both pathways are involved in regulating cell proliferation in wide variety of cells of epithelial and non-epithelial origin, so we tested which pathway regulated NKCC activity in cultured cells. In cultured rat skeletal muscle (L6) and intestinal epithelial (IEC-6) cells, NKCC activity in the basal state comprised 30 to 50% of total potassium influx, assessed as bumetanide-sensitive 38Rb-uptake. This NKCC activity could not be abolished by inhibitors of ERK MAPK (PD98059 and U0126), PKC (GF109203X), or PI 3-K (wortmannin, LY294002). In L6 myoblasts and in IEC-6 cells, elevation of cAMP levels with isoproterenol or forskolin led to a 60% inhibition on NKCC activity. In contrast, incubation of IEC-6 cells with the PKA-inhibitor H-89 resulted in 50% increase of NKCC activity compared with the basal level. In conclusion, it appears that in cultured cells the cAMP--PKA pathway regulates NKCC activity. This resembles hyperosmotic regulation of NKCC activity. 相似文献
12.
13.
14.
van Vliet C Thomas EC Merino-Trigo A Teasdale RD Gleeson PA 《Progress in biophysics and molecular biology》2003,83(1):1-45
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, integrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations. 相似文献
15.
Chen H Kintner DB Jones M Matsuda T Baba A Kiedrowski L Sun D 《Journal of neurochemistry》2007,102(6):1783-1795
We investigated the role of Na(+)-K(+)-Cl(-) co-transporter isoform 1 (NKCC1) and reversal of Na(+)/Ca(2+) exchanger (NCX(rev)) in glutamate-mediated excitotoxicity in oligodendrocytes obtained from rat spinal cords (postnatal day 6-8). An immunocytochemical characterization showed that these cultures express NKCC1 and Na(+)/Ca(2+) exchanger isoforms 1, 2, and 3 (NCX1, NCX2, NCX3). Exposing the cultures to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) plus cyclothiazide (CTZ) led to a transient rise in intracellular (), which was followed by a sustained overload, NKCC1 phosphorylation, and a NKCC1-mediated Na(+) influx. In the presence of a specific AMPA receptor inhibitor 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), the AMPA/CTZ failed to elicit any changes in . The AMPA/CTZ-induced sustained rise led to mitochondrial Ca(2+) accumulation, release of cytochrome c from mitochondria, and cell death. The AMPA/CTZ-elicited increase, mitochondrial damage, and cell death were significantly reduced by inhibiting NKCC1 or NCX(rev). These data suggest that in cultured oligodendrocytes, activation of AMPA receptors leads to NKCC1 phosphorylation that enhances NKCC1-mediated Na(+) influx. The latter triggers NCX(rev) and NCX(rev)-mediated overload and compromises mitochondrial function and cellular viability. 相似文献
16.
The type II Na/phosphate cotransporters (NaPi-II) are critical for the control of plasma phosphate levels in vertebrates. NaPi-IIb mediates phosphate uptake from the small intestine followed by glomerular filtration and selective reabsorption from the renal proximal tubule by NaPi-IIa and NaPi-IIc. A C-terminal stretch of cysteine residues represents the hallmark of the NaPi-IIb isoforms. This motif is well conserved among NaPi-IIb type transporters but not found in other membrane proteins. To investigate the role of this motif we analyzed NaPi-II constructs in transiently and stably transfected MDCK cells. This cell line targets the NaPi-IIb isoforms from flounder and mouse to the apical membrane whereas the mouse IIa isoform shows no plasma membrane preference. Different parts of mouse NaPi-IIa and NaPi-IIb C-termini were fused to GFP-tagged flounder NaPi-II. The constructs showed strong staining of the plasma membrane with NaPi-IIb related constructs sorted predominantly apically, the IIa constructs localized apically and basolaterally with slight intracellular retention. When the cysteine stretch was inserted into the NaPi-IIa C-terminus, the construct was retained in a cytoplasmic compartment. 2-bromopalmitate, a specific palmitoylation inhibitor, released the transporter to apical and basolateral membranes. The drug also leads to a redistribution of the NaPi-IIb construct to both plasma membrane compartments. Immunoprecipitation of tagged NaPi-II constructs from [3H]-palmitate labeled MDCK cells indicated that the cysteine stretch is palmitoylated. Our results suggest that the modified cysteine motif prevents the constructs from basolateral sorting. Additional sorting determinants located downstream of the cysteine stretch may release the cargo to the apical compartment. 相似文献
17.
Most soluble lysosomal proteins bind the mannose 6-phosphate receptor (M6P-R) to be sorted to the lysosomes. However, the lysosomes of I-cell disease (ICD) patients, a condition resulting from a mutation in the phosphotransferase that adds mannose 6-phosphate to hydrolases, have near normal levels of several lysosomal proteins, including the sphingolipid activator proteins (SAPs), GM2AP and prosaposin. We tested the hypothesis that SAPs are targeted to the lysosomal compartment via the sortilin receptor. To test this hypothesis, a dominant-negative construct of sortilin and a sortilin small interfering RNA (siRNA) were introduced into COS-7 cells. Our results showed that both the truncated sortilin and the sortilin siRNA block the traffic of GM2AP and prosaposin to the lysosomal compartment. This observation was confirmed by a co-immunoprecipitation, which demonstrated that GM2AP and prosaposin are interactive partners of sortilin. Furthermore, a dominant-negative mutant GGA prevented the trafficking of prosaposin and GM2AP to lysosomes. In conclusion, our results show that the trafficking of SAPs is dependent on sortilin, demonstrating a novel lysosomal trafficking. 相似文献
18.
Su G Haworth RA Dempsey RJ Sun D 《American journal of physiology. Cell physiology》2000,279(6):C1710-C1721
In this study, we examined theNa+-K+-Cl cotransporter activityand expression in rat cortical astrocyte differentiation. Astrocyte differentiation was induced by dibutyryl cAMP (DBcAMP, 0.25 mM) for7 days, and cells changed from a polygonal to process-bearing morphology. Basal activity of the cotransporter was significantly increased in DBcAMP-treated astrocytes (P < 0.05).Expression of an ~161-kDa cotransporter protein was increased by 91%in the DBcAMP-treated astrocytes. Moreover, the specific[3H]bumetanide binding was increased by 67% in theDBcAMP-treated astrocytes. Inhibition of protein synthesis bycyclohexamide (2-3 µg/ml) significantly attenuated theDBcAMP-mediated upregulation of the cotransporter activity andexpression. The Na+-K+-Clcotransporter in astrocytes has been suggested to play a role inK+ uptake. In 75 mM extracellular K+concentration, the cotransporter-mediated K+ influx wasstimulated by 147% in nontreated cells and 79% in DBcAMP-treatedcells (P < 0.05). To study whether this highK+-induced stimulation of the cotransporter is attributedto membrane depolarization and Ca2+ influx, the role of theL-type voltage-dependent Ca2+ channel was investigated. Thehigh-K+-mediated stimulation of the cotransporter activitywas abolished in the presence of either 0.5 or 1.0 µM of the L-typechannel blocker nifedipine or Ca2+-free HEPES buffer. Arise in intracellular free Ca2+ in astrocytes was observedin high K+. These results provide the first evidence thatthe Na+-K+-Cl cotransporterprotein expression can be regulated selectively when intracellular cAMPis elevated. The study also demonstrates that the cotransporter inastrocytes is stimulated by high K+ in aCa2+-dependent manner. 相似文献
19.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release. 相似文献
20.
Bergeron MJ Bürzle M Kovacs G Simonin A Hediger MA 《The Journal of biological chemistry》2011,286(13):11242-11253
Renal excretion of citrate, an inhibitor of calcium stone formation, is controlled mainly by reabsorption via the apical Na+-dicarboxylate cotransporter NaDC1 (SLC13A2) in the proximal tubule. Recently, it has been shown that the protein phosphatase calcineurin inhibitors cyclosporin A (CsA) and FK-506 induce hypocitraturia, a risk factor for nephrolithiasis in kidney transplant patients, but apparently through urine acidification. This suggests that these agents up-regulate NaDC1 activity. Using the Xenopus lævis oocyte and HEK293 cell expression systems, we examined first the effect of both anti-calcineurins on NaDC1 activity and expression. While FK-506 had no effect, CsA reduced NaDC1-mediated citrate transport by lowering heterologous carrier expression (as well as endogenous carrier expression in HEK293 cells), indicating that calcineurin is not involved. Given that CsA also binds specifically to cyclophilins, we determined next whether such proteins could account for the observed changes by examining the effect of selected cyclophilin wild types and mutants on NaDC1 activity and cyclophilin-specific siRNA. Interestingly, our data show that the cyclophilin isoform B is likely responsible for down-regulation of carrier expression by CsA and that it does so via its chaperone activity on NaDC1 (by direct interaction) rather than its rotamase activity. We have thus identified for the first time a regulatory partner for NaDC1, and have gained novel mechanistic insight into the effect of CsA on renal citrate transport and kidney stone disease, as well as into the regulation of membrane transporters in general. 相似文献