首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cartilage chitinase 3-like protein 2 (CHI3L2, YKL-39) is secreted by articular chondrocytes, also synoviocytes, lung, and heart. Increased levels of YKL-39 have been demonstrated in synovial fluids of patients with rheumatoid or osteoarthritis as well as in some other pathologies and in malignant tumors, particularly in glioblastomas. It belongs to glycosyl hydrolase family 18 and the most closely related to human cartilage glycoprotein 39 (HC gp-39 or chitinase 3-like protein 1, CHI3L1 or YKL-40), which as it was shown previously, promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts. Dose-dependent growth stimulation was observed when the fibroblastic cell line was exposed to YKL-40 in a concentration range from 0.1 to 2 nM, which is similar to the effective dose of the well characterized mitogen, insulinlike growth factor I. The use of selective inhibitors of the mitogen-activated protein kinase (MAP kinase) signaling pathway indicates that both, YKL-40 and IGF-I are involved in phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2). Thus YKL-40 initiates a signaling cascade which leads to increased cell proliferation, suggesting that this protein could play some role in the inhibition of apoptosis. We report here that YKL-39, which as YKL-40 has significantly increased expression in glioblastomas, also activates signal-regulated kinases ERK1/ERK2 in human embryonic kidney (HEK293) and human glioblastoma (U87 MG) cells.  相似文献   

2.
In rat pheochromocytoma cell line (PC12) cells, initial epidermal growth factor (EGF)-stimulated extracellular signal-regulated protein kinases 1/2 (ERK1/2) phosphorylation was similar to that promoted by nerve growth factor (NGF), but declined rapidly. Pre-treatment with apigenin or LY294002 sustained EGF-stimulated ERK1/2 phosphorylation whereas wortmannin partially blocked initial ERK1/2 phosphorylation. Changes in ERK1/2 phosphorylation correlated with alterations in p90 ribosomal S6 kinase activity. Wortmannin, LY294002 and apigenin totally blocked growth factor-induced protein kinase B phosphorylation. However, none of them potentiated Raf activation, which was in fact decreased by LY290042 and wortmannin. The sustained EGF-induced ERK1/2 activation promoted by apigenin was not sufficient to commit PC12 cells to differentiate, which was achieved by stimulation with NGF, either alone or in the presence of apigenin.  相似文献   

3.
4.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

5.
The duration of intracellular signaling is thought to be a critical component in effecting specific biological responses. This paradigm is demonstrated by growth factor activation of the extracellular signal-regulated kinase (ERK) signaling cascade in the rat pheochromocytoma cell line (PC12 cells). In this model, sustained ERK activation induced by nerve growth factor (NGF) results in differentiation, whereas transient ERK activation induced by epidermal growth factor (EGF) results in proliferation in these cells. Recently, the immediate early gene product c-fos has been proposed to be a sensor for ERK signaling duration in fibroblasts. In this study, we ask whether this is true for NGF and EGF stimulation of PC12 cells. We show that NGF, but not EGF, can regulate both c-fos stability and activation in an ERK-dependent manner in PC12 cells. This is achieved through ERK-dependent phosphorylation of c-fos. Interestingly, distinct sites regulate enhanced stability and transactivation of c-fos. Phosphorylation of Thr325 and Thr331 are required for maximal NGF-dependent transactivation of c-fos. In addition, a consensus ERK binding site (DEF domain) is also required for c-fos transactivation. However, stability is controlled by ERK-dependent phosphorylation of Ser374, while phosphorylation of Ser362 can induce conformational changes in protein structure. We also provide evidence that sustained ERK activation is required for proper post-translational regulation of c-fos following NGF treatment of PC12 cells. Because these ERK-dependent phosphorylations are required for proper c-fos function, and occur sequentially, we propose that c-fos is a sensor for ERK signaling duration in the neuronal-like cell line PC12.  相似文献   

6.
YKL-40 was reported to be associated with the risk of hypertension. Whether the variants of CHI3L1 gene were associated with both YKL-40 levels and hypertension needs to be further elucidated. In a 1:1 matched case-control study of 507 pairs with available YKL-40 levels and DNA samples nested in a prospective cohort of Chinese subjects, the 15 tag single nucleotide polymorphisms (SNPs) of CHI3L1 gene were genotyped. The levels of YKL-40 among different genotypes of each SNP were compared after false discovery rate adjustment. Multivariable conditional logistic regression analyses were used to explore the association between the genotypes and the risk of hypertension. Subjects with the genetic variants for rs10399931, rs1538372, rs2071580, rs2297839 and rs4950928 had lower YKL-40 levels. The genetic variant for rs10399805 was associated with higher YKL-40 level. Subjects with the genotype of GA/AA of rs10399805 had a 1.34-fold risk of hypertension compared with those with GG genotype in the total population (P = .05). Subjects with heterozygote/rare homozygote genotype of rs4950928 and rs2297839 both had a significantly lower risk of hypertension compared with those with major homozygote genotype among men. The ORs (95% CIs) were 0.46 (0.23-0.89) and 0.49 (0.26-0.91), respectively. The above three SNPs could significantly improve the accuracy of risk prediction for hypertension based on the conventional factors. The genotypes of rs10399805, rs4950928 and rs2297839 may hopefully become stable biomarkers for predicting the risk of hypertension.  相似文献   

7.
8.
Treatment of PC12 pheochromocytoma cells with nerve growth factor (NGF) or bradykinin leads to the activation of extracellular signal-regulated kinases ERK1 and ERK2, two isozymes of microtubule-associated protein 2 (MAP) kinase that are present in numerous cell lines and regulated by diverse extracellular signals. The activation of MAP kinase is associated with its phosphorylation on tyrosine and threonine residues, both of which are required for activity. In the present studies, we have identified a factor in extracts of PC12 cells treated with NGF or bradykinin, named MAP kinase activator, that, when reconstituted with inactive MAP kinase from untreated cells, dramatically increased MAP kinase activity. Activation of MAP kinase in vitro by this factor required MgATP and was associated with the phosphorylation of a 42- (ERK1) and 44-kDa (ERK2) polypeptide. Incorporation of 32P into ERK1 and ERK2 occurred primarily on tyrosine and threonine residues and was associated with a single tryptic peptide, which is identical to one whose phosphorylation is increased by treatment of intact PC12 cells with NGF. Thus, the MAP kinase activator identified in PC12 cells is likely to be a physiologically important intermediate in the signaling pathways activated by NGF and bradykinin. Moreover, stimulation of the activator by NGF and bradykinin suggests that tyrosine kinase receptors and guanine nucleotide-binding protein-coupled receptors are both capable of regulating these pathways.  相似文献   

9.
Epidermal growth factor (EGF) receptor stimulation or protein kinase C (PKC) activation enhances corneal epithelial cell proliferation. This response is needed to maintain corneal transparency and vision. We clarify here in human corneal epithelial cells (HCEC) the cause and effect relationships between ERK1/2 and NKCC1 phosphorylation induced by EGF receptor or PKC activation. Furthermore, the roles are evaluated of NF-κB and ERK1/2 in mediating negative feedback control of ERK1/2 and NKCC1 phosphorylation through modulating DUSP1 and DUSP6 expression levels. Intracellular Ca(2+) rises induced by EGF elicited NKCC1 phosphorylation through ERK1/2 activation. Bumetanide suppressed EGF-induced NKCC1 phosphorylation, transient cell swelling and cell proliferation. This cause and effect relationship is similar to that induced by PKC stimulation. NKCC1 activation occurred through time-dependent increases in protein-protein interaction between ERK1/2 and NKCC1, which were proportional to EGF concentration. DUSP6 upregulation obviated EGF and PKC-induced NKCC1 phosphorylation. NF-κB inhibition by PDTC prolonged ERK1/2 activation through GSK-3 inactivation leading to declines in DUSP1 expression levels. These results show that EGF receptor and PKC activation induce increases in HCEC proliferation through ERK1/2 interaction with NKCC1. This response is modulated by changes in DUSP1- and DUSP6-mediated negative feedback control of ERK1/2-induced NKCC1 phosphorylation.  相似文献   

10.

Background

In non-excitable cells, one major route for calcium entry is through store-operated calcium (SOC) channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ store. STIM1 and Orai1 are major regulators of SOC channels. In this study, we explored the functions of STIM1 and Orai1 in epidermal growth factor (EGF)-induced cell proliferation and migration in retinal pigment epithelial cells (ARPE-19 cell line).

Results

EGF triggers cell proliferation and migration in ARPE-19 cells. Cell proliferation and migration involve STIM1 and Orai1, as well as phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2, and Akt. Pharmacological inhibitors of SOC channels and siRNA of Orai1 and STIM1 suppress cell proliferation and migration. Pre-treatment of mitogen-activated protein kinase kinase (MEK) inhibitors and a phosphatidylinositol 3 kinases (PI3K) inhibitor attenuated cell proliferation and migration. However, inhibition of the SOC channels failed to prevent EGF-mediated ERK 1/2 and Akt phosphorylation.

Conclusions

Our results showed that STIM1, Orai1, ERK 1/2, and Akt are key determinants of EGF-mediated cell growth in ARPE-19 cells. EGF is a potent growth molecule that has been linked to the development of PVR, and therefore, STIM1, Orai1, as well as the MEK/ERK 1/2 and PI3K/Akt pathways, might be potential therapeutic targets for drugs aimed at treating such disorders.  相似文献   

11.
12.
Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway.  相似文献   

13.
14.
Cell polarity is critical for cell migration and requires localized signal transduction in subcellular domains. Recent evidence demonstrates that activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) in focal adhesions is essential for cell migration. GIT1 (G‐protein‐coupled receptor kinase‐interacting protein 1) has been shown to bind paxillin and regulate focal‐adhesion disassembly. We have previously reported that GIT1 binds to MEK1 [MAPK (mitogen‐activated protein kinase)/ERK kinase 1] and acts as a scaffold to enhance ERK1/2 activation in response to EGF (epidermal growth factor). In the present study we show that GIT1 associates with ERK1/2 in focal adhesions and this association increases after EGF stimulation. The CC (coiled‐coil) domain of ERK1/2 is required for association with GIT1, translocation to focal adhesions, and cell spreading and migration. Immunofluorescent staining showed that, after EGF stimulation, GIT1 co‐localized with pERK1/2 (phosphorylated ERK1/2) in focal adhesions. The binding of GIT1 and ERK1/2 was functionally important, since transfecting an ERK2 mutant lacking the CC domain [ERK2(del CC)] significantly decreased pERK1/2 translocation to focal adhesions, cell spreading and migration induced by EGF. In summary, the CC domain of ERK1/2 is necessary for binding to GIT1, for ERK1/2 activation in focal adhesions, and for cell spreading and migration.  相似文献   

15.
BackgroundExposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood.PurposeIn this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells.MethodThe human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process.ResultsHyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally, phosphorylation of ERK1/2, p38, and Akt were affected by CHI3L1 knockdown.ConclusionThis study indicates that CHI3L1 is involved in hyperoxia-induced cell death, suggesting that CHI3L1 may be one of several cell death regulators influencing the MAPK and PI3K pathways during oxidative stress in human airway epithelial cells.  相似文献   

16.
The constitutively activated tyrosine kinase Fip1-like 1 (FIP1L1)-platelet-derived growth factor receptor α (PDGFRα) causes eosinophilic leukemia EoL-1 cells to proliferate. Recently, we demonstrated that histone deacetylase inhibitors suppressed this proliferation and induced the differentiation of EoL-1 cells into eosinophils in parallel with a decrease in the level of FIP1L1-PDGFRα. In this study, we analyzed the mechanism by which FIP1L1-PDGFRα induces the proliferation and whether the suppression of cell proliferation triggers the differentiation into eosinophils. The FIP1L1-PDGFRα inhibitor imatinib inhibited the proliferation of EoL-1 cells and decreased the level of the oncoprotein c-Myc as well as the phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK). The proliferation of EoL-1 cells and expression of c-Myc were also inhibited by the MEK inhibitor U0126 and JNK inhibitor SP600125. The expression of the eosinophilic differentiation marker CCR3 was not induced by imatinib. These findings suggest that FIP1L1-PDGFRα induces the proliferation of EoL-1 cells through the induction of c-Myc expression via ERK and JNK signaling pathways, but is not involved in the inhibition of differentiation toward mature eosinophils.  相似文献   

17.
Thrombopoietin (TPO), a hematopoietic growth factor regulating platelet production, and its receptor (TPOR) were recently shown to be expressed in the brain where they exert proapoptotic activity. Here we used PC12 cells, an established model of neuronal differentiation, to investigate the effects of TPO on neuronal survival and differentiation. These cells expressed TPOR mRNA. TPO increased cell death in neuronally differentiated PC12 cells but had no effect in undifferentiated cells. Surprisingly, TPO inhibited nerve growth factor (NGF)-induced differentiation of PC12 cells in a dose- and time-dependent manner. This inhibition was dependent on the activity of Janus kinase-2 (JAK2). Using phospho-kinase arrays and Western blot we found downregulation of the NGF-stimulated phosphorylation of the extracellular signal-regulated kinase p42ERK by TPO with no effect on phosphorylation of Akt or stress kinases. NGF-induced phosphorylation of ERK-activating kinases, MEK1/2 and C-RAF was also reduced by TPO while NGF-induced RAS activation was not attenuated by TPO treatment. In contrast to its inhibitory effects on NGF signalling, TPO had no effect on epidermal growth factor (EGF)-stimulated ERK phosphorylation or proliferation of PC12 cells. Our data indicate that TPO via activation of its receptor-bound JAK2 delays the NGF-dependent acquisition of neuronal phenotype and decreases neuronal survival by suppressing NGF-induced ERK activity.  相似文献   

18.
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.  相似文献   

19.
The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these growth factor receptors.  相似文献   

20.
Inhibition of the functions of L1 cell adhesion molecule (L1) by ethanol has been implicated in the pathogenesis of the neurodevelopmental aspects of the fetal alcohol syndrome (FAS). Ethanol at pharmacological concentrations has been shown to inhibit L1-mediated neurite outgrowth of rat post-natal day 6 cerebellar granule cells (CGN). Extracellular signal-related kinases (ERK) 1/2 activation occurs following L1 clustering. Reduction in phosphoERK1/2 by inhibition of mitogen-activated protein kinase kinase (MEK) reduces neurite outgrowth of cerebellar neurons. Here, we examine the effects of ethanol on L1 activation of ERK1/2, and whether this activation occurs via activation of fibroblast growth factor receptor 1 (FGFR1). Ethanol at 25 mm markedly inhibited ERK1/2 activation by both clustering L1 with cross-linked monoclonal antibodies, or by L1-Fc chimeric proteins. Clustering L1 with subsequent ERK1/2 activation did not result in tyrosine phosphorylation of the FGFR1. In addition, inhibition of FGFR1 tyrosine kinase blocked basic fibroblast growth factor (bFGF) activation of ERK1/2, but did not affect activation of ERK1/2 by clustered L1. We conclude that ethanol disrupts the signaling pathway between L1 clustering and ERK1/2 activation, and that this occurs independently of the FGFR1 pathway in cerebellar granule cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号