共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bjarnadottir U Nielsen JE 《Protein science : a publication of the Protein Society》2010,19(12):2485-2497
The conformational change observed upon ligand binding and phosphorylation for the cAMP-dependent protein kinase (protein kinase A-PKA) is of high importance for the regulation of its activity. We calculate pKa values and net charges for 18 3D structures of PKA in various conformations and liganded states to examine the role of electrostatics in ligand binding and activation. We find that the conformational change of PKA takes place without any significant net proton uptake/release at all pH values, thus indicating that PKA has evolved to reduce any pH-dependent barriers to the conformational motion. We furthermore find that the binding of ligands induces large changes in the net charge of PKA at most pH values, but significantly, we find that the net charge difference at physiological pH is close to zero, thus indicating that the active-site pKa values have been preorganized for substrate binding. We are unable to unequivocally resolve the identity of the groups responsible for determining the pH-activity profile of PKA but speculate that the titration of Lys 168 or the titration of ATP itself could be responsible for the loss of activity at high pH values. Finally, we examine the effect of point mutations on the pKa values of the PKA catalytic residues and find these to be relatively insensitive to both noncharge-altering and charge-altering mutations. 相似文献
3.
The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes 总被引:6,自引:0,他引:6
M E Noble R K Wierenga A M Lambeir F R Opperdoes A M Thunnissen K H Kalk H Groendijk W G Hol 《Proteins》1991,10(1):50-69
Crystals of triosephosphate isomerase from Trypanosoma brucei brucei have been used in binding studies with three competitive inhibitors of the enzyme's activity. Highly refined structures have been deduced for the complexes between trypanosomal triosephosphate isomerase and a substrate analogue (glycerol-3-phosphate to 2.2 A), a transition state analogue (3-phosphonopropionic acid to 2.6 A), and a compound structurally related to both (3-phosphoglycerate to 2.2 A). The active site structures of these complexes were compared with each other, and with two previously determined structures of triosephosphate isomerase either free from inhibitor or complexed with sulfate. The comparison reveals three conformations available to the "flexible loop" near the active site of triosephosphate isomerase: open (no ligand), almost closed (sulfate), and fully closed (phosphate/phosphonate complexes). Also seen to be sensitive to the nature of the active site ligand is the catalytic residue Glu-167. The side chain of this residue occupies one of two discrete conformations in each of the structures so far observed. A "swung out" conformation unsuitable for catalysis is observed when sulfate, 3-phosphoglycerate, or no ligand is bound, while a "swung in" conformation ideal for catalysis is observed in the complexes with glycerol-3-phosphate or 3-phosphonopropionate. The water structure of the active site is different in all five structures. The results are discussed with respect to the triosephosphate isomerase structure function relationship, and with respect to an on-going drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei. 相似文献
4.
To investigate the effects of multiple protonation states on protein-ligand recognition, we generated alternative protonation states for selected titratable groups of ligands and receptors. The selection of states was based on the predicted pK(a) of the unbound receptor and ligand and the proximity of titratable groups of the receptor to the binding site. Various ligand tautomer states were also considered. An independent docking calculation was run for each state. Several protocols were examined: using an ensemble of all generated states of ligand and receptor, using only the most probable state of the unbound ligand/receptor, and using only the state giving the most favorable docking score. The accuracies of these approaches were compared, using a set of 176 protein-ligand complexes (15 receptors) for which crystal structures and measured binding affinities are available. The best agreement with experiment was obtained when ligand poses from experimental crystal structures were used. For 9 of 15 receptors, using an ensemble of all generated protonation states of the ligand and receptor gave the best correlation between calculated and measured affinities. 相似文献
5.
There is currently great interest in comparing protein-ligand docking programs. A review of recent comparisons shows that it is difficult to draw conclusions of general applicability. Statistical hypothesis testing is required to ensure that differences in pose-prediction success rates and enrichment rates are significant. Numerical measures such as root-mean-square deviation need careful interpretation and may profitably be supplemented by interaction-based measures and visual inspection of dockings. Test sets must be of appropriate diversity and of good experimental reliability. The effects of crystal-packing interactions may be important. The method used for generating starting ligand geometries and positions may have an appreciable effect on docking results. For fair comparison, programs must be given search problems of equal complexity (e.g. binding-site regions of the same size) and approximately equal time in which to solve them. Comparisons based on rescoring require local optimization of the ligand in the space of the new objective function. Re-implementations of published scoring functions may give significantly different results from the originals. Ostensibly minor details in methodology may have a profound influence on headline success rates. 相似文献
6.
Olsson TS Ladbury JE Pitt WR Williams MA 《Protein science : a publication of the Protein Society》2011,20(9):1607-1618
The extent of enthalpy-entropy compensation in protein-ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. -TΔS plots). However, transforming the thermodynamic data into ΔΔ-plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and -TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and -TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification. 相似文献
7.
We present a large test set of protein-ligand complexes for the purpose of validating algorithms that rely on the prediction of protein-ligand interactions. The set consists of 305 complexes with protonation states assigned by manual inspection. The following checks have been carried out to identify unsuitable entries in this set: (1) assessing the involvement of crystallographically related protein units in ligand binding; (2) identification of bad clashes between protein side chains and ligand; and (3) assessment of structural errors, and/or inconsistency of ligand placement with crystal structure electron density. In addition, the set has been pruned to assure diversity in terms of protein-ligand structures, and subsets are supplied for different protein-structure resolution ranges. A classification of the set by protein type is available. As an illustration, validation results are shown for GOLD and SuperStar. GOLD is a program that performs flexible protein-ligand docking, and SuperStar is used for the prediction of favorable interaction sites in proteins. The new CCDC/Astex test set is freely available to the scientific community (http://www.ccdc.cam.ac.uk). 相似文献
8.
The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements. 相似文献
9.
We present version 3.0 of our publicly available protein-protein docking benchmark. This update includes 40 new test cases, representing a 48% increase from Benchmark 2.0. For all of the new cases, the crystal structures of both binding partners are available. As with Benchmark 2.0, Structural Classification of Proteins (Murzin et al., J Mol Biol 1995;247:536-540) was used to remove redundant test cases. The 124 unbound-unbound test cases in Benchmark 3.0 are classified into 88 rigid-body cases, 19 medium-difficulty cases, and 17 difficult cases, based on the degree of conformational change at the interface upon complex formation. In addition to providing the community with more test cases for evaluating docking methods, the expansion of Benchmark 3.0 will facilitate the development of new algorithms that require a large number of training examples. Benchmark 3.0 is available to the public at http://zlab.bu.edu/benchmark. 相似文献
10.
Aldose reductase is a promising target for the treatment of diabetic complications, and as such, has become the focus of various drug design projects. As revealed by a survey of available crystal structures, the protein shows pronounced induced-fit effects upon ligand binding. Although helping to explain the enzyme's substrate promiscuity, phenomena of this kind are still responsible for significant complications in structure-based design efforts directed to aldose reductase. Accordingly, a deeper understanding of the principles governing conformational alterations in this enzyme would be of utmost practical importance. As a first step in addressing this issue, molecular dynamics (MD) simulations have been carried out. The ultrahigh resolution crystal structure of aldose reductase complexed with inhibitor IDD594 served as ideal starting point for a set of different simulations of nanosecond time scale: the native complexed state with bound inhibitor, the uncomplexed state (after removal of the inhibitor) at standard temperature, and the uncomplexed state at elevated temperature. The reference simulation of the complex exhibits extraordinary stability of the overall fold, whereas two distinct conformational substates are found for the binding-site region. In contrast, already at standard temperature pronounced changes are observed in the binding region during the simulation of the uncomplexed state. Leu300, for example, closes the access to the pocket opened by IDD594. On the other hand, conformations around the catalytic site are highly conserved, with the His110-Tyr48-NADP+ orientation being stabilized by a water molecule. Detailed analysis of the trajectories allows to reveal a set of distinct conformational substates that may prove useful as alternative structural templates in virtual screening for new aldose reductase inhibitors. 相似文献
11.
Although the hydrogen bond is known to be an important mediator of intermolecular interactions, there has yet to be an analysis of the role of CH...O hydrogen bonds in protein-ligand complexes. In this work, we present evidence for such nonstandard hydrogen bonds from a survey of aromatic ligands in 184 kinase crystal structures and 358 high-resolution structures from the Protein Data Bank. CH groups adjacent to the positively charged nitrogen of nicotinamide exhibit geometric preferences strongly suggestive of hydrogen bonding interactions, as do heterocyclic CH groups in kinase ligands, while other aromatic CH groups do not exhibit these characteristics. Ab initio calculations reveal a considerable range of CH...O hydrogen bonding potentials among different aromatic ring systems, with nicotinamide and heterocycles preferred in kinase inhibitors showing particularly favorable interactions. These results provide compelling evidence for the existence of CH...O hydrogen bonds in protein-ligand interactions, as well as information on the relative strength of various aromatic CH donors. Such knowledge will be of considerable value in protein modeling, ligand design, and structure-activity analysis. 相似文献
12.
pK(a) values of ionizable residues have been calculated using the PROPKA method and structures of 75 protein-protein complexes and their corresponding free forms. These pK(a) values were used to compute changes in protonation state of individual residues, net changes in protonation state of the complex relative to the uncomplexed proteins, and the correction to a binding energy calculated assuming standard protonation states at pH 7. For each complex, two different structures for the uncomplexed form of the proteins were used: the X-ray structures determined for the proteins in the absence of the other protein and the individual protein structures taken from the structure of the complex (referred to as unbound and bound structures, respectively). In 28 and 77% of the cases considered here, protein-protein binding is accompanied by a complete (>95%) or significant (>50%) change in protonation state of at least one residue using unbound structures. Furthermore, in 36 and 61% of the cases, protein-protein binding is accompanied by a complete or significant net change in protonation state of the complex relative to the separated monomers. Using bound structures, the corresponding values are 12, 51, 20, and 48%. Comparison to experimental data suggest that using unbound and bound structures lead to over- and underestimation of binding-induced protonation state changes, respectively. Thus, we conclude that protein-protein binding is often associated with changes in protonation state of amino acid residues and with changes in the net protonation state of the proteins. The pH-dependent correction to the binding energy contributes at least one order of magnitude to the binding constant in 45 and 23%, using unbound and bound structures, respectively. 相似文献
13.
Damien Farrell Emanuel Sá Miranda Helen Webb Nikolaj Georgi Peter B. Crowley Lawrence P. McIntosh Jens Erik Nielsen 《Proteins》2010,78(4):843-857
NMR‐monitored pH titration experiments are routinely used to measure site‐specific protein pKa values. Accurate experimental pKa values are essential in dissecting enzyme catalysis, in studying the pH‐dependence of protein stability and ligand binding, in benchmarking pKa prediction algorithms, and ultimately in understanding electrostatic effects in proteins. However, due to the complex ways in which pH‐dependent electrostatic and structural changes manifest themselves in NMR spectra, reported apparent pKa values are often dependent on the way that NMR pH‐titration curves are analyzed. It is therefore important to retain the raw NMR spectroscopic data to allow for documentation and possible re‐interpretation. We have constructed a database of primary NMR pH‐titration data, which is accessible via a web interface. Here, we report statistics of the database contents and analyze the data with a global perspective to provide guidelines on best practice for fitting NMR titration curves. Titration_DB is available at http://enzyme.ucd.ie/Titration_DB . Proteins 2010. © 2009 Wiley‐Liss, Inc. 相似文献
14.
José L. Neira Francisco J. Florencio M. Isabel Muro‐Pastor Bruno Rizzuti 《Protein science : a publication of the Protein Society》2017,26(6):1105-1115
The sequential action of glutamine synthetase (GS) and glutamate synthase (GOGAT) in cyanobacteria allows the incorporation of ammonium into carbon skeletons. In the cyanobacterium Synechocystis sp. PCC 6803, the activity of GS is modulated by the interaction with proteins, which include a 65‐residue‐long intrinsically disordered protein (IDP), the inactivating factor IF7. This interaction is regulated by the presence of charged residues in both IF7 and GS. To understand how charged amino acids can affect the binding of an IDP with its target and to provide clues on electrostatic interactions in disordered states of proteins, we measured the pKa values of all IF7 acidic groups (Glu32, Glu36, Glu38, Asp40, Asp58, and Ser65, the backbone C‐terminus) at 100 mM NaCl concentration, by using NMR spectroscopy. We also obtained solution structures of IF7 through molecular dynamics simulation, validated them on the basis of previous experiments, and used them to obtain theoretical estimates of the pKa values. Titration values for the two Asp and three Glu residues of IF7 were similar to those reported for random‐coil models, suggesting the lack of electrostatic interactions around these residues. Furthermore, our results suggest the presence of helical structure at the N‐terminus of the protein and of conformational changes at acidic pH values. The overall experimental and in silico findings suggest that local interactions and conformational equilibria do not play a role in determining the electrostatic features of the acidic residues of IF7. 相似文献
15.
In this study, we report the effects of acidic to basic residue point mutations (5K) on the dipole moment of RNAse SA at different pHs. Dipole moments were determined by measuring solution capacitance of the wild type (WT) and the 5K mutant with an impedance analyzer. The dipole moments were then (1) compared with theoretically calculated dipole moments, (2) analyzed to determine the effect of the point mutations, and (3) analyzed for their contribution to overall protein-protein interactions (PPI) in solution as quantitated by experimentally derived second virial coefficients. We determined that experimental and calculated dipoles were in reasonable agreement. Differences are likely due to local motions of residue side chains, which are not accounted for by the calculated dipole. We observed that the proteins' dipole moments increase as the pH is shifted further from their isoelectric points and that the wild-type dipole moments were greater than those of the 5K. This is likely due to an increase in the proportion of one charge (either negative or positive) relative to the other. A greater charge disparity corresponded to a larger dipole moment. Finally, the larger dipole moments of the WT resulted in greater attractive overall PPI for that protein as compared to the 5K. 相似文献
16.
The trypsin-like serine proteases comprise a structurally similar family of proteins with a wide diversity of biological functions. Members of this family play roles in digestion, hemostasis, immune responses, and cancer metastasis. Bovine trypsin is an archetypical member of this family that has been extensively characterized both functionally and structurally, and that preferentially hydrolyzes Arg/Lys-Xaa peptide bonds. We have used molecular dynamics (MD) simulations to study bovine trypsin complexed with the two noncovalent small-molecule ligands, benzamidine and tranylcypromine, that have the same hydrogen-bond donating moieties as Arg and Lys side-chains, respectively. Multiple (10) simulations ranging from 1 ns to 2.2 ns, with explicit water molecules and periodic boundary conditions, were performed. The simulations reveal that the trypsin binding pocket residues are relatively rigid regardless of whether there is no ligand, a high-affinity ligand (benzamidine), or a low-affinity ligand (tranylcypromine). The thermal average of the conformations sampled by benzamidine bound to trypsin is planar and consistent with the planar internal geometry of the benzamidine crystallographic model coordinates. However, the most probable bound benzamidine conformations are +/-25 degrees out of plane, implying that the observed X-ray electron density represents an average of densities from two mirror symmetric, nonplanar conformations. Solvated benzamidine has free energy minima at +/-45 degrees , and the induction of a more planar geometry upon binding is associated with approximately 1 kcal/mol of intramolecular strain. Tranylcypromine's hydrogen-bonding pattern in the MD differs substantially from that inferred from the X-ray electron density. Early in simulations of this system, tranylcypromine adopts an alternative binding conformation, changing from the crystallographic conformation, with a direct hydrogen bond between its amino moiety and the backbone oxygen of Gly219, to one having a bridging water molecule. This result is consistently seen with the CHARMM22, Amber, or OPLS-AA force fields. The trypsin-tranylcypromine hydrogen-bonding pattern observed in the simulations also occurs as the crystallographic binding mode of the Lys15 side-chain of bovine pancreatic trypsin inhibitor bound to trypsin. In this latter cocrystal, a bridging crystallographic water does reside between the side-chain's amino group and the trypsin Gly219 backbone oxygen. Furthermore, the trypsin-tranylcypromine simulations sample two different stable noncrystallographic binding poses. These data suggest that some of the electron density ascribed to tranylcypromine in the X-ray model is rather due to a bound water molecule, and that multiple tranylcypromine binding conformations (crystallographic disorder) may be the cause of ambiguous electron density. The combined trypsin-benzamidine and trypsin- tranylcypromine results highlight the ability of simulations to augment protein-ligand complex structural data by deconvoluting the effects of thermal and structural averaging, and by finding energetically optimal ligand and bound water positions for weakly bound ligands. 相似文献
17.
The acid unfolding of staphylococcal nuclease (SNase) is very cooperative (Whitten and García-Moreno, Biochemistry 2000;39:14292-14304). As many as seven hydrogen ions (H+) are bound preferentially by the acid-unfolded state relative to the native (N) state in the pH range 3.2-3.9. To investigate the mechanism of acid unfolding, structure-based pKa calculations were performed with a variety of continuum electrostatic methods. The calculations reproduced successfully the H+ binding properties of the N state between pH 5 and 9, but they systematically overestimated the number of H+ bound upon acid unfolding. The calculated pKa values of all carboxylic residues in the N state were more depressed than they should be. The discrepancy between the observed and the calculated H+ uptake upon acid unfolding was not improved by using high protein dielectric constants, structures relaxed with molecular dynamics, or other empirical modifications implemented previously by others to maximize agreement between measured and calculated pKa values. This suggests an important role for conformational fluctuations of the backbone as important determinants of pKa values of carboxylic groups. Because no global or subglobal conformational changes have been observed previously for SNase under acidic conditions above the acid-unfolding region, these fluctuations must be local. The acid unfolding of SNase does not seem to involve the disruption of the N state by accruement of intramolecular repulsive interactions, nor the protonation of key ion paired carboxylic residues. It is more consistent with modest contributions from many H+ binding groups, with an important role for local conformational fluctuations in the coupling between H+ binding and the global structural transition. 相似文献
18.
Recognizing the limits of trying to achieve chemical accuracy for pK(a) calculations with a purely electrostatic model, we include empirical corrections into the Poisson-Boltzmann solver macroscopic electrostatics with atomic detail (Bashford, Biochemistry 1990;29:10219-10225), to improve the reliability and accuracy of the model. The total number of parameters is kept to a minimum to maximize the robustness of the model for compounds outside of the fitting dataset. The parameters are based on: (a) the electrostatic interaction between functional groups close to the titratable site, (b) the electrostatic work required to desolvate the residue, and (c) the site-to-site interactions. These interactions are straightforward to calculate once the electrostatic field has been solved for each residue using the linearized Poisson-Boltzmann equation and are assumed to be linearly related to the intrinsic pK(a). Two hundred and eighty-six residues from 30 proteins are used to determine the empirical parameters, which result in a root mean square error (RMSE) of 0.70 for the entire set. Eight proteins with 46 experimentally known values were excluded from the parameterization to test the model. This test set had a RMSE of 1.08. We show that the parameterized model improves the results over other models, although like other models the error is strongly correlated with the degree to which a residue is buried. The parameters themselves indicate that local effects are most important for determining the pK(a), whereas site-to-site interactions are found to be less significant. 相似文献
19.
We have developed an evolutionary approach for flexible ligand docking. This approval, GEMDOCK, uses a Generic Evolutionary Method for molecular DOCKing and an empirical scoring function. The former combines both discrete and continuous global search strategies with local search strategies to speed up convergence, whereas the latter results in rapid recognition of potential ligands. GEMDOCK was tested on a diverse data set of 100 protein-ligand complexes from the Protein Data Bank. In 79% of these complexes, the docked lowest energy ligand structures had root-mean-square derivations (RMSDs) below 2.0 A with respect to the corresponding crystal structures. The success rate increased to 85% if the structure water molecules were retained. We evaluated GEMDOCK on two cross-docking experiments in which each ligand of a protein ensemble was docked into each protein of the ensemble. Seventy-six percent of the docked structures had RMSDs below 2.0 A when the ligands were docked into foreign structures. We analyzed and validated GEMDOCK with respect to various search spaces and scoring functions, and found that if the scoring function was perfect, then the predicted accuracy was also essentially perfect. This study suggests that GEMDOCK is a useful tool for molecular recognition and may be used to systematically evaluate and thus improve scoring functions. 相似文献
20.
Paul R. Gooley Max A. Keniry Roumen A. Dimitrov Danny E. Marsh David W. Keizer Kenwyn R. Gayler Bruce R. Grant 《Journal of biomolecular NMR》1998,12(4):523-534
The NMR structure of the 98 residue -elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous solution conditions in the millimolar range, the protein forms a discrete homodimer where the N-terminal helices of each monomer form an interface. The structure was calculated with 1047 intrasubunit and 40 intersubunit NOE derived distance constraints and 236 dihedral angle constraints for each subunit using the molecular dynamics program DYANA. The twenty best conformers were energy-minimized in OPAL to give a root-mean-square deviation to the mean structure of 0.82 Å for the backbone atoms and 1.03 Å for all heavy atoms. The monomeric structure is nearly identical to the recently derived X-ray crystal structure (backbone rmsd 0.86 Å for residues 2 to 97) and shows five helices, a two stranded antiparallel -sheet and an -loop. Using 1H,15N HSQC spectroscopy the pKa of the N- and C-termini, Tyr12, Asp21, Asp30, Asp72, and Tyr85 were determined and support the proposal of several stabilizing ionic interactions including a salt bridge between Asp21 and Lys62. The hydroxyl hydrogens of Tyr33 and Ser78 are clearly observed indicating that these residues are buried and hydrogen bonded. Two other tyrosines, Tyr47 and Tyr87, show pKa's >12, however, there is no indication that their hydroxyls are hydrogen bonded. Calculations of theoretical pKa's show general agreement with the experimentally determined values and are similar for both the crystal and solution structures. 相似文献