首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
G-protein coupled receptor structure   总被引:1,自引:0,他引:1  
Because of their central role in regulation of cellular function, structure/function relationships for G-protein coupled receptors (GPCR) are of vital importance, yet only recently have sufficient data been obtained to begin mapping those relationships. GPCRs regulate a wide range of cellular processes, including the senses of taste, smell, and vision, and control a myriad of intracellular signaling systems in response to external stimuli. Many diseases are linked to GPCRs. A critical need exists for structural information to inform studies on mechanism of receptor action and regulation. X-ray crystal structures of only one GPCR, in an inactive state, have been obtained to date. However considerable structural information for a variety of GPCRs has been obtained using non-crystallographic approaches. This review begins with a review of the very earliest GPCR structural information, mostly derived from rhodopsin. Because of the difficulty in crystallizing GPCRs for X-ray crystallography, the extensive published work utilizing alternative approaches to GPCR structure is reviewed, including determination of three-dimensional structure from sparse constraints. The available X-ray crystallographic analyses on bovine rhodopsin are reviewed as the only available high-resolution structures for any GPCR. Structural information available on ligand binding to several receptors is included. The limited information on excited states of receptors is also reviewed. It is concluded that while considerable basic structural information has been obtained, more data are needed to describe the molecular mechanism of activation of a GPCR.  相似文献   

3.
4.
G-protein coupled receptors (GPCR) and phosphatidylinositol phosphate kinases (PIPK) are important key switches in signal transduction pathways. A novel class of proteins was identified in the genomes of two unrelated organisms that harbor both a GPCR and a PIPK domain. Dictyostelium discoideum contains one GPCR-PIPK, which is crucial in cell-density sensing, and the genomes of Phytophthora sojae and Phytophthora ramorum each encode twelve GPCR-PIPKs. Intriguingly, these are currently the only species that have these two domains combined in one protein. Here, the structural and regulatory characteristics of GPCR-PIPKs are presented and discussed. It is hypothesized that, upon activation, GPCR-PIPKs are able to trigger heterotrimeric G-protein signaling and phosphoinositide second-messenger synthesis.  相似文献   

5.
Adaptive evolution of G-protein coupled receptor genes   总被引:2,自引:0,他引:2  
The phylogeny and patterns of nucleotide substitutions in the visual pigment genes, adrenergic receptor genes, muscarinic receptor genes, and in the human mas oncogene were studied by comparing their DNA sequences. The evolutionary tree obtained shows that the visual pigment genes and mas oncogene form one cluster and that the receptor genes form another. In the evolution of rhodopsin genes, synonymous substitutions outnumber nonsynonymous substitutions. This is consistent with the neutral theory of molecular evolution. However, the early evolutionary stages of alpha- and beta-adrenergic and muscarinic receptors are notable for significantly more nonsynonymous substitutions than synonymous substitutions, suggesting the acquisition of novel functional adaptations. Variable rates of nonsynonymous changes in different domains of these proteins reveal DNA segments that might have been important in their functional adaptations.   相似文献   

6.
Mechanisms of statin-mediated inhibition of small G-protein function   总被引:8,自引:0,他引:8  
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been reported to reduce the risk of Alzheimer disease. We have shown previously that statins inhibit a beta-amyloid (Abeta)-mediated inflammatory response through mechanisms independent of cholesterol reduction. Specifically, statins exert anti-inflammatory actions through their ability to prevent the isoprenylation of members of the Rho family of small G-proteins, resulting in the functional inactivation of these G-proteins. We report that statin treatment of microglia results in perturbation of the cytoskeleton and morphological changes due to alteration in Rho family function. Statins also block Abeta-stimulated phagocytosis through inhibition of Rac action. Paradoxically, the statin-mediated inactivation of G-protein function was associated with increased GTP loading of Rac and RhoA, and this effect was observed in myeloid lineage cells and other cell types. Statin treatment disrupted the interaction of Rac with its negative regulator the Rho guanine nucleotide dissociation inhibitor (RhoGDI), an interaction that is dependent on protein isoprenylation. We propose that lack of negative regulation accounts for the increased GTP loading. Isoprenylation of Rac is also required for efficient interaction with the plasma membrane, and we report that statin treatment dramatically reduces the capacity of Rac to interact with membranes. These results suggest a mechanism by which statins inhibit the actions of Rho GTPases and attenuate Abeta-stimulated inflammation.  相似文献   

7.
Cytomegaloviruses (CMVs) are species-specific beta-herpesviruses whose replicative success is largely due to establishment of novel mechanisms for altering the host immune response. CMV encodes 3 families of putative G-protein coupled receptors (GPCRs) likely pirated from the host cell. While the functions of these virally encoded GPCRs remain unclear, the receptors possess potent signaling abilities. Understanding the molecular regulation of these GPCRs will provide important insight into CMV pathogenesis.  相似文献   

8.
Sequence alignment of the G-protein coupled receptor superfamily.   总被引:20,自引:0,他引:20  
The multitude of G-protein coupled receptor (GPR) superfamily cDNAs recently isolated has exceeded the number of receptor subtypes anticipated by pharmacological studies. Analysis of the sequence similarities and unique features of the members of this family is valuable for designing strategies to isolate related cDNAs, for developing hypotheses concerning substrate-ligand and receptor-effector interactions, and for understanding the evolution of these genes. We have compiled and aligned the 74 unique amino acid sequences published to date and review the present understanding of the structural motifs contributing to ligand binding and G-protein coupling.  相似文献   

9.
Polymorphisms of G-protein coupled receptor (GPCR) genes are associated with disease risk and modification, and the response to receptor-directed therapy. Genomic sequencing ( approximately 1700 automated runs) from as many as 120 chromosomes from 60 multiethnic individuals was performed to confirm non-synonymous coding polymorphisms reported in the dbSNP database from 25 randomly selected GPCR genes. These polymorphisms were in regions of the receptors responsible for structural integrity, ligand binding, G-protein coupling and phosphoregulation. However, most of these putative polymorphisms could not be confirmed (false positive rate of 68%). Based on these results, we suggest that the variability of the superfamily is not well defined, and we caution against exclusive reliance on databases for selection of candidate GPCR polymorphisms for disease association and pharmacogenetic studies.  相似文献   

10.
11.
The conformation of orexin-A, an orphan G-protein coupled receptor agonist has been determined when bound to sodium dodecylsulphate-d(25) (SDS) micelles by (1)H and (13)C NMR and molecular modeling. Orexin-A has been implicated in sleep-wakefulness and feeding regulation. The conformational preference of orexin-A consists of a short helical section, involving Asp(5) to Gln(9) that makes up helix I, followed by a bend from Lys(10) to Ser(13). Residues Leu(16) to Gly(22) make up helix II. The conformation of orexin-A can now be used to explain the results of earlier Ala substitution mutagenesis experiments (J. G. Darker et al., Bioorg. Med. Chem. Lett. 11, 737-740 (2001); S. Ammoun, et al., J. Pharmacol. Expt. Ther. 305, 507-514 (2003)). Darker et al., working with orexin-A (15-33) amide, observed a significant drop in functional potency at the OX(1)R receptor when Leu(16), Leu(19), Leu(20), His(26), Gly(29), Ile(30), Leu(31), Thr(32), and Leu(33) were replaced by Ala. Ammoun et al. identified three areas of interest, which were the same for OX(1)R and OX(2)R receptors, as amino acids 15-17, 20 and 25-26 with the most marked reduction in activity being produced by the replacement of Leu(20) by Ala. We suggest that Leu(16), Leu(19), and Leu(20), which are in helix II, are likely responsible for binding orexin-A to the surface of the micelle.  相似文献   

12.
Dorsal root ganglion (DRG) neurons express mRNAs for numerous two-pore domain K+ (K2P) channels and G-protein coupled receptors (GPCR). Recent studies have shown that TRESK is a major background K+ channel in DRG neurons. Here, we demonstrate the pharmacological properties of TRESK, including GPCR agonist-induced effects on DRG neurons. TRESK mRNA was highly expressed in DRG compared to brain and spinal cord. Similar to cloned TRESK, native TRESK was inhibited by acid and arachidonic acid (AA), but not zinc. Native TRESK was also activated by GPCR agonists such as acetylcholine, glutamate, and histamine. The glutamate-activated TRESK was blocked by lamotrigine in DRG neurons. In COS-7 cells transfected with mouse TRESK, 30 μM lamotrigine inhibited TRESK by ∼50%. Since TRESK is target of modulation by acid, AA, GPCR agonists, and lamotrigine, it is likely to play an active role in the regulation of excitability in DRG neurons.  相似文献   

13.
Members of the family C receptors within the G-protein coupled receptor superfamily include the metabotropic glutamate receptors, GABA(B) receptors, the calcium-sensing receptor (CaSR), the V2R pheromone receptors, the T1R taste receptors, and a small group of uncharacterized orphan receptors. We have cloned and studied the mouse GPRC6A family C orphan receptor. The open reading frame codes for a protein with highest sequence identity to the fish 5.24 odorant receptor and the mammalian CaSR. The gene structure shows a striking resemblance to that of the CaSR. Results from RT-PCR analyses showed that mouse GPRC6A mRNA is expressed in mouse brain, skeletal muscle, heart, lung, spleen, kidney, liver, and in the early stage mouse embryo. Immunocytochemical analysis of the cloned mouse GPRC6A cDNA expressed in human embryonic kidney 293 cells demonstrated that GPRC6A was present on the plasma membrane, as well as in the endoplasmic reticulum and nuclear envelope membranes of transfected cells. A chimeric cDNA construct in which the extracellular ligand binding domain of the fish 5.24 amino acid-activated odorant receptor was ligated to the complementary downstream sequence of the mouse GPRC6A receptor indicated that GPRC6A is coupled to phosphoinositol turnover and release of intracellular calcium. Further studies with mouse GPRC6A expressed in Xenopus laevis oocytes demonstrated that this receptor possesses a pharmacological profile resembling that of the fish 5.24 odorant receptor. These findings suggest that GPRC6A may function as the receptor component of a novel cellular transmitter system in mammals.  相似文献   

14.
The actin cytoskeleton is involved in a multitude of cellular responses besides providing structural support. While the role of the actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, reorganization of the actin cytoskeleton upon signaling by G-protein coupled receptors (GPCRs) represents a relatively unexplored area. The G-protein coupled receptor superfamily is an important protein family in mammals, involved in signal transduction across membranes. G-protein coupled receptors act as major signaling hubs and drug targets. The serotonin(1A) receptor is a representative member of the G-protein coupled receptor superfamily and plays a crucial role in the generation and modulation of various cognitive, developmental and behavioral functions. In order to monitor the changes in the actin cytoskeleton upon serotonin(1A) receptor signaling in a quantitative manner, we developed an approach based on high magnification imaging of F-actin in cells, followed by image reconstruction. Our results suggest that the actin cytoskeleton is reorganized in response to serotonin(1A) receptor signaling. In addition, we show that reorganization of the actin cytoskeleton is strongly dependent on adenosine 3',5'-cyclic monophosphate level, and is mediated by the activation of protein kinase A. Our results are consistent with the possibility of a feedback mechanism involving the actin cytoskeleton, adenosine 3',5'-cyclic monophosphate level and the serotonin(1A) receptor.  相似文献   

15.
FFA2 (GPR43) is a receptor for short-chain fatty acids (SCFAs), acetate, and propionate. FFA2 is predominantly expressed in islets, a subset of immune cells, adipocytes, and the gastrointestinal tract which suggest a possible role in inflammatory and metabolic conditions. We have previously described the identification and characterization of novel phenylacetamides as allosteric agonists of FFA2. In the current study, we have investigated the molecular determinants contributing to receptor activation with the endogenous and synthetic ligands as well as allosteric interactions between these two sites. The mutational analysis revealed previously unidentified sites that may allosterically regulate orthosteric ligand’s function as well as residues potentially important for the interactions between orthosteric and allosteric binding sites.  相似文献   

16.
Smoothened is a member of the G-protein coupled receptor (GPCR) family responsible for the transduction of the Hedgehog signal to the intracellular effectors of the Hedgehog signaling pathway. Aberrant regulation of this receptor is implicated in many cancers but also in neurodegenerative disorders. Despite the pharmacological relevance of this receptor, very little is known about its functional mechanism and its physiological ligand. In order to characterize this receptor for basic and pharmacological interests, we developed the expression of human Smoothened in the yeast Saccharomyces cerevisiae and Smoothened was then purified. Using Surface Plasmon Resonance technology, we showed that human Smoothened was in a native conformational state and able to interact with its antagonist, the cyclopamine, both at the yeast plasma membrane and after purification. Thermostability assays on purified human Smoothened showed that this GPCR is relatively stable in the classical detergent dodecyl-β-d-maltoside (DDM). The fluorinated surfactant C8F17TAC, which has been proposed to be less aggressive towards membrane proteins than classical detergents, increased Smoothened thermostability in solution. Moreover, the replacement of a glycine by an arginine in the third intracellular loop of Smoothened coupled to the use of the fluorinated surfactant C8F17TAC during the mutant purification increased Smoothened thermostability even more. These data will be very useful for future crystallization assays and structural characterization of the human receptor Smoothened.  相似文献   

17.
Previously, we showed that Abl kinases (c-Abl, Arg) are activated downstream of PDGF in a manner dependent on Src kinases and PLC-γ1, and promote PDGF-mediated proliferation and migration of fibroblasts. We additionally demonstrated that Abl kinases bind directly to PDGFR-β via their SH2 domains. In this study, we extend these findings by demonstrating that Abl kinases also are activated downstream of a PDGF autocrine growth loop in glioblastoma cells, indicating that the PDGFR-Abl signaling pathway also is likely to be important in glioblastoma development and/or progression. We recently showed that Abl kinases are highly active in many breast cancer cell lines, and the Her-2 receptor tyrosine kinase contributes to c-Abl and Arg kinase activation. In this study, we show that Abl kinase SH2 domains bind directly to Her-2, and like PDGFR-β, Her-2 directly phosphorylates c-Abl. Previously, we demonstrated that PDGFR-β directly phosphorylates Abl kinases in vitro, and Abl kinases reciprocally phosphorylate PDGFR-β. Here, we show that PDGFR-β-phosphorylation of Abl kinases has functional consequences as PDGFR-β phosphorylates Abl kinases on Y245 and Y412, sites known to be required for activation of Abl kinases. Moreover, PDGFR-β phosphorylates Arg on two additional unique sites whose function is unknown. Importantly, we also show that Abl-dependent phosphorylation of PDGFR-β has functional and biological significances. c-Abl phosphorylates three tyrosine residues on PDGFR-β (Y686, Y934, Y970), while Arg only phosphorylates Y686. Y686 and Y934 reside in PDGFR-β catalytic domains, while Y970 is in the C-terminal tail. Using site-directed mutagenesis, we show that Abl-dependent phosphorylation of PDGFR-β activates PDGFR-β activity, in vitro, but serves to downregulate PDGFR-mediated chemotaxis. These data are exciting as they indicate that Abl kinases not only are activated by PDGFR and promote PDGFR-mediated proliferation and migration, but also act in an intricate negative feedback loop to turn-off PDGFR-mediated chemotaxis.  相似文献   

18.
Bacterial transmembrane receptors regulate an intracellular catalytic output in response to extracellular sensory input. To investigate the conformational changes that relay the regulatory signal, we have studied the HAMP domain, a ubiquitous intracellular module connecting input to output domains. HAMP forms a parallel, dimeric, four-helical coiled coil, and rational substitutions in our model domain (Af1503 HAMP) induce a transition in its interhelical packing, characterized by axial rotation of all four helices (the gearbox signaling model). We now illustrate how these conformational changes are propagated to a downstream domain by fusing Af1503 HAMP variants to the DHp domain of EnvZ, a bacterial histidine kinase. Structures of wild-type and mutant constructs are correlated with ligand response in vivo, clearly associating them with distinct signaling states. We propose that altered recognition of the catalytic domain by DHp, rather than a shift in position of the phospho-accepting histidine, forms the basis for regulation of kinase activity.  相似文献   

19.
Wang X  Zhang S 《PloS one》2011,6(8):e23076
G-protein coupled receptors (GPCRs) participate in a wide range of vital regulations of our physiological actions. They are also of pharmaceutical importance and have become many therapeutic targets for a number of disorders and diseases. Purified GPCR-based approaches including structural study and novel biophysical and biochemical function analyses are increasingly being used in GPCR-directed drug discovery. Before these approaches become routine, however, several hurdles need to be overcome; they include overexpression, solubilization, and purification of large quantities of functional and stable receptors on a regular basis. Here we report milligram production of a human formyl peptide receptor 3 (FPR3). FPR3 comprises a functionally distinct GPCR subfamily that is involved in leukocyte chemotaxis and activation. The bioengineered FPR3 was overexpressed in stable tetracycline-inducible mammalian cell lines (HEK293S). After a systematic detergent screening, fos-choline-14 (FC-14) was selected for subsequent solubilization and purification processes. A two-step purification method, immunoaffinity using anti-rho-tag monoclonal antibody 1D4 and gel filtration, was used to purify the receptors to near homogeneity. Immunofluorescence analysis showed that expressed FPR3 was predominantly displayed on cellular membrane. Secondary structural analysis using circular dichroism showed that the purified FPR3 receptor was correctly folded with >50% α-helix, which is similar to other known GPCR secondary structures. Our method can readily produce milligram quantities of human FPR3, which would facilitate in developing human FPR as therapeutic drug targets.  相似文献   

20.
Mesangial cell proliferation is pivotal to the pathology of glomerular injury in inflammation. We have previously reported that lipoxins, endogenously produced eicosanoids with anti-inflammatory and pro-resolution bioactions, can inhibit mesangial cell proliferation in response to several agents. This process is associated with elaborate receptor cross-talk involving modification receptor tyrosine kinase phosphorylation (McMahon, B., Mitchell, D., Shattock, R., Martin, F., Brady, H. R., and Godson, C. (2002) FASEB J. 16, 1817-1819). Here we demonstrate that the lipoxin A(4) (LXA(4)) receptor is coupled to activation and recruitment of the SHP-2 (SH2 domain-containing tyrosine phosphatase-2) within a lipid raft microdomain. Using site-directed mutagenesis of the cytosolic domain of the platelet-derived growth factor receptor beta (PDGFRbeta), we report that mutation of the sites for phosphatidylinositol 3-kinase (Tyr(740) and Tyr(751)) and SHP-2 (Tyr(763) and Tyr(1009)) recruitment specifically inhibit the effect of LXA(4) on the PDGFRbeta signaling; furthermore inhibition of SHP-2 expression with short interfering RNA constructs blocked the effect of LXA(4) on PDGFRbeta phosphorylation. We demonstrate that association of the PDGFRbeta with lipid raft microdomains renders it susceptible to LXA(4)-mediated dephosphorylation by possible reactivation of oxidatively inactivated SHP-2. These data further elaborate on the potential mechanisms underlying the anti-inflammatory, proresolution, and anti-fibrotic bioactions of lipoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号