首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variation was investigated in 17 populations of the Italian endemic Apennine yellow-bellied toad using both mitochondrial (598 bp of the cytochrome b gene) and nuclear (21 allozyme loci) markers. Populations from central Calabria (southern Italy) showed the highest levels of intrapopulation genetic variation, whereas samples located north of this region were nearly lacking in variation. This appears to be a typical pattern of 'southern richness and northern purity', usually attributed to the prolonged population stability within southern refugia coupled with the loss of variation during postglacial northward expansion. However, the overall pattern of genetic variation observed has a strong geographical component, suggesting two Calabrian plains, Catanzaro and Crati-Sibari, as historical barriers to dispersal separating three population groups. These findings cannot be explained by the prolonged stability of southern populations alone, and suggest that the southern richness has been at least in part shaped by allopatric differentiation within the refugial range, followed by intermixing of previously differentiated lineages. From a conservation standpoint, Calabria is the major genetic diversity reservoir for this species, thus deserving particular conservation efforts. Furthermore, although the low intrapopulation genetic variation outside Calabria appears to be of clear historical origin, evidence of a current reduction of gene flow suggests that human disturbance has also played a part, particularly in the anthropogenic impacted Volturno river drainage basin.  相似文献   

2.
At the Last Glacial Maximum (LGM), the southern European peninsulas were important refugia for temperate species. Current genetic subdivision of species within these peninsulas may reflect past population subdivision at the LGM, as in ‘refugia within refugia’, and/or at other time periods. In the present study, we assess whether pygmy shrew populations from different regions within Italy are genetically and morphologically distinct. One maternally and two paternally inherited molecular markers (cytochrome b and Y‐chromosome introns, respectively) were analysed using several phylogenetic methods. A geometric morphometric analysis was performed on mandibles to evaluate size and shape variability between populations. Mandible shape was also explored with a functional approach that considered the mandible as a first‐order lever affecting bite force. We found genetically and morphologically distinct European, Italian, and southern Italian groups. Mandible size increased with decreasing latitude and southern Italian pygmy shrews exhibited mandibles with the strongest bite force. It is not clear whether or not the southern Italian and Italian groups of pygmy shrews occupied different refugia within the Italian peninsula at the LGM. It is likely, however, that geographic isolation earlier than the LGM on islands at the site of present‐day Calabria was important in generating the distinctive southern Italian group of pygmy shrews, and also the genetic groups in other small vertebrates that we review here. Calabria is an important hotspot for genetic diversity, and is worthy of conservation attention. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 774–787.  相似文献   

3.
The Italian endemic genus Salamandrina has been historically regarded as monotypic but, recently, studies based on both mitochondrial and nuclear markers have indicated the existence of two distinct species of spectacled salamanders: Salamandrina perspicillata, in central and northern Italy, and Salamandrina terdigitata, in southern Italy. We analyzed nucleotide variation at mitochondrial and nuclear genes [cytochrome b, 12S and 16S rRNA, recombination activating gene (RAG 1)] in 223 individuals from 56 locations, aiming to investigate their genetic structure and recent evolutionary histories. Phylogenetic and phylogeographical analyses revealed the existence of three and two genetically distinct groups of populations in northern and southern salamander, respectively. Historical demographic analyses led to the inference of range expansion for both species in the late Pleistocene. During the last glacial stage, each salamander survived in a single refugium, namely the southern in Calabria and the northern in central Italy. At the end of this period, both lineages expanded northward and established secondary contact. Spatial distribution of RAG 1 haplotype variation revealed two differentiated population groups corresponding to the major mitochondrial (mt)DNA clades. Nuclear pattern of introgressive hybridization was more extensive than the highly limited introgression of mtDNA markers. From a conservation standpoint, southern Latium and Calabria proved to be the major genetic diversity reservoirs, thus deserving particular conservation efforts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 903–922.  相似文献   

4.
Aim To infer the evolutionary history of Rana (Pelophylax) lessonae Camerano within its inferred Quaternary refugial range, and to shed light on the processes that have contributed to shaping the patterns of diversity within the southern European peninsulas. Location The Italian peninsula south of the Alps and Sicily. Methods Sequence analysis of a mitochondrial cytochrome b gene fragment in 149 individuals sampled from 25 localities. Results Three mitochondrial DNA (mtDNA) phylogroups were identified, distributed in northern Italy, the whole Italian peninsula south of the northern Apennines, and Sicily. Syntopy between the northern and peninsular lineages was observed close to the northern Apennines. The northern lineage was the most differentiated, showing a net sequence divergence of 4.8 ± 0.8% with respect to the two others, whereas the net divergence between peninsular and Sicilian lineages was 2.6 ± 0.6%. Analysis of molecular variance (amova ) revealed that 93% of the overall variation occurred between these three groups. Historical demographic statistics support a recent expansion for both the northern and peninsular groups, but not for the Sicilian group. In both northern and peninsular Italy, such an expansion was likely to have occurred during the last glaciation. Main conclusions Our results suggest that a number of microevolutionary processes were involved in shaping the present genetic structure of R. lessonae in Italy. These encompass allopatric differentiations in three distinct Pleistocene refugia, recent population expansions and secondary contacts. Our results, together with some previous work, support (1) the existence of a suture zone in the northern Apennines, and (2) the possibility of population expansions during the last glacial phase, when a vast widening of the lowland floodplain habitats followed sea‐level fall, particularly in northern Italy. When compared with previous analyses of allozyme data, it appears that the peninsular mtDNA lineage has recently replaced the Sicilian one in southern Calabria, and we suggest that this event occurred due to selective introgression. The implications of such an occurrence for the study of factors underlying the patterns of diversity within this southern European biodiversity hotspot are discussed. Taxonomic implications of the results are also evaluated.  相似文献   

5.
The aim of the present study was to investigate the genetic structure of the Valais shrew (Sorex antinorii) by a combined phylogeographical and landscape genetic approach, and thereby to infer the locations of glacial refugia and establish the influence of geographical barriers. We sequenced part of the mitochondrial cytochrome b (cyt b) gene of 179 individuals of S. antinorii sampled across the entire species' range. Six specimens attributed to S. arunchi were included in the analysis. The phylogeographical pattern was assessed by Bayesian molecular phylogenetic reconstruction, population genetic analyses, and a species distribution modelling (SDM)‐based hindcasting approach. We also used landscape genetics (including isolation‐by‐resistance) to infer the determinants of current intra‐specific genetic structure. The phylogeographical analysis revealed shallow divergence among haplotypes and no clear substructure within S. antinorii. The starlike structure of the median‐joining network is consistent with population expansion from a single refugium, probably located in the Apennines. Long branches observed on the same network also suggest that another refugium may have existed in the north‐eastern part of Italy. This result is consistent with SDM, which also suggests several habitable areas for S. antinorii in the Italian peninsula during the LGM. Therefore S. antinorii appears to have occupied disconnected glacial refugia in the Italian peninsula, supporting previous data for other species showing multiple refugia within southern refugial areas. By coupling genetic analyses and SDM, we were able to infer how past climatic suitability contributed to genetic divergence of populations. The genetic differentiation shown in the present study does not support the specific status of S. arunchi. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 864–880.  相似文献   

6.
It is now well established that Southern European peninsulas have been major glacial refugia for temperate species during Pleistocene climatic oscillations. However, substantial environmental changes occurred also within these peninsulas throughout the Pleistocene, raising questions about the role and interplay of various microevolutionary processes in shaping patterns of intraspecific diversity within these areas. Here, we investigate the patterns of genetic variation in the bank vole Myodes glareolus within the Italian peninsula. By using a panel of 13 microsatellite loci, we found more intraspecific variation than expected based on previous assessments. Indeed, both Bayesian and ordination‐based clustering analyses of variation recovered five main geographic/genetic clusters along the peninsula, with three clusters geographically restricted to the southern portion of the peninsula. This clustering is supported by previous evidences of some morphological distinctiveness among these populations. This pattern can be explained by a refugia‐within‐refugia scenario, with the occurrence of multiple sub‐refugia for the bank vole within the Italian peninsula, likely promoted by the major palaeo‐environmental changes which affected forested habitats within this area during the Pleistocene. Moreover, our results support a scenario whereby the high levels of intraspecific diversity observed within major Pleistocene refugia are better explained by dynamic microevolutionary processes occurred within these areas, rather than by long‐term demographic stability of refugial population. Finally, the narrow and isolated distribution of some of the identified lineages suggests the need for future assessments of their conservation and taxonomic status.  相似文献   

7.
Two distinct lineages of Rana temporaria are known in the Palaearctic region, but it is uncertain whether this species persisted in one or more Pleistocene refugia. We resolved the phylogeographic history and genetic variability of R. temporaria in the Italian peninsula, a 'traditional' Pleistocene refugium, and related our findings to patterns described for other European populations. We sequenced the mitochondrial markers Cox I and cytochrome b. Phylogenetic reconstruction only indicated the presence of haplotypes belonging to the Western lineage in the Italian peninsula. Overall, the genetic variability of Italian populations was higher than other European populations, which shared haplotypes with the Alpine populations. We demonstrated subdivision into five main Italian sublineages, which was associated with a geographical structure of populations in two divergent groups. In particular, one Apennine group might have resulted from bottlenecks during the last interglacials ages. In contrast, Alpine populations were recently diverged and showed incomplete lineage sorting. Our data indicate that the Italian peninsula served as refugium for the Western lineage of R. temporaria. Dispersion towards Central Europe probably started only from the western slope of the Alps via a rapid leading edge expansion. The identified structure is partially congruent with traditional peripheral refugia identified for plants. This evolutionary scenario does not support any taxonomic distinction at the subspecific level for R. temporaria.  相似文献   

8.
Numerous studies have shown that the genetic diversity of species inhabiting temperate regions has been shaped by changes in their distributions during the Quaternary climatic oscillations. For some species, the genetic distinctness of isolated populations is maintained during secondary contact, while for others, admixture is frequently observed. For the winter moth (Operophtera brumata), an important defoliator of oak forests across Europe and northern Africa, we previously determined that contemporary populations correspond to genetic diversity obtained during the last glacial maximum (LGM) through the use of refugia in the Iberian and Aegean peninsulas, and to a lesser extent the Caucasus region. Missing from this sampling were populations from the Italian peninsula and from North Africa, both regions known to have played important roles as glacial refugia for other species. Therefore, we genotyped field‐collected winter moth individuals from southern Italy and northwestern Tunisia—the latter a region where severe oak forest defoliation by winter moth has recently been reported—using polymorphic microsatellite. We reconstructed the genetic relationships of these populations in comparison to moths previously sampled from the Iberian and Aegean peninsulas, the Caucasus region, and western Europe using genetic distance, Bayesian clustering, and approximate Bayesian computation (ABC) methods. Our results indicate that both the southern Italian and the Tunisian populations are genetically distinct from other sampled populations, and likely originated in their respective refugium during the LGM after diverging from a population that eventually settled in the Iberian refugium. These suggest that winter moth populations persisted in at least five Mediterranean LGM refugia. Finally, we comment that outbreaks by winter moth in northwestern Tunisia are not the result of a recent introduction of a nonnative species, but rather are most likely due to land use or environmental changes.  相似文献   

9.
We present a range-wide synthesis of our own research and related work on the complex postglacial history of Abies alba Mill. It is based on macroremains, fossil pollen records as well as on different genetic markers. The geographic distribution of genetic lineages and allele frequencies together with the fossil records confirm multiple refugia with at least three of them being sources for the Holocene range expansion into Central Europe, representing so-called effective refugia. One is located in the northern Apennines. A long-term refugium in the southern Balkans contributes to northward expansion with a branch along the Carpathians in the East and the Dinaric Alps in the West. Furthermore, new allozyme data indicate a third effective refugium in the northern or western Balkans, respectively. Using different genetic marker categories the differentiation of A. alba populations could be attributed to different time scales. A separation of maternal lineages took place in previous glacial cycles of the Quaternary, while a second pattern of genetic differentiation is the result of isolation processes during the last glaciation and subsequent gene flow after range expansion. Suture and introgression zones of refugial gene pools were clearly recognised. The patterns of genetic variation and genetic diversity spanning between rear and leading edges of the present range are discussed for evolutionary implications and conservation strategies.  相似文献   

10.
The genetic structure of populations over a wide geographical area should reflect the demographic and evolutionary processes that have shaped a species across its range. We examined the population genetic structure of antelope ground squirrels (Ammospermophilus leucurus) across the complex of North American deserts from the Great Basin of Oregon to the cape region of the Baja California peninsula. We sampled 73 individuals from 13 major localities over this 2500-km transect, from 43 to 22 degrees north. Our molecular phylogeographical analysis of 555 bp of the mitochondrial cytochrome b gene and 510 bp of the control region revealed great genetic uniformity in a single clade that extends from Oregon to central Baja California. A second distinct clade occupies the southern half of the peninsula. The minimal geographical structure of the northern clade, its low haplotype diversity and the distribution of pairwise differences between haplotypes suggest a rapid northward expansion of the population that must have followed a northward desert habitat shift associated with the most recent Quaternary climate warming and glacial retreat. The higher haplotype diversity within the southern clade and distribution of pairwise differences between haplotypes suggest that the southern clade has a longer, more stable history associated with a southern peninsular refugium. This system, as observed, reflects both historical and contemporary ecological and evolutionary responses to physical environmental gradients within genetically homogeneous populations.  相似文献   

11.
Euphorbia spinosa, a perennial xerophilous shrub naturally distributed across the Italian peninsula, was selected for examination of the role of the Ligurian Alps and Apennines in glacial survival. The Italian Peninsula is considered to be one of the principal glacial refugia in Europe, but few plant population genetic and phylogeography studies have been undertaken in this region. The combined analysis of chloroplast and nuclear loci (ITS, cpSSR and ISSR) enabled us to detect extensive DNA variation and proved to be a very powerful tool for the reconstruction of the phylogeography. Molecular data support the hypothesis of a long-term separation of the Northwestern (Maritime Alps, Sardinia, Corsica, Northern Apennines) and Southeastern (Southern Apennines and Balkan area) lineages in glacial refugia. The existence of allopatrically fragmented lineages is most probably the result of isolation in different glacial refugia, possibly due to the Last Glacial Maximum cooling and the topographic complexity of the Italian peninsula. The most plausible hypothesis assumes the formation of two migration paths during more recent periods: the first one starting with southward migration and the second one moving northwards. The Central Apennines should be considered the confluence of migration routes radiating from separate refugia according to this hypothesis.  相似文献   

12.
Anthropogenic global climate changes are one of the greatest threats to biodiversity. Distribution modeling can predict the effects of climate changes and potentially their effects on genetic diversity. DNA barcoding quickly identifies patterns of genetic diversity. As a case study, we use DNA barcodes and distribution models to predict threats under climate changes in the frog Nanorana parkeri, which is endemic to the Qinghai-Tibetan Plateau. Barcoding identifies major lineages W and E. Lineage W has a single origin in a refugium and Lineage E derives from three refugia. All refugia locate in river valleys and each greatly contributes to the current level of intraspecific genetic diversity. Species distribution models suggest that global climate changes will greatly influence N. parkeri, especially in the level of genetic diversity, because two former refugia will fail to provide suitable habitat. Our pipeline provides a novel application of DNA barcoding and has important implications for the conservation of biodiversity in southern areas of the Qinghai-Tibetan Plateau.  相似文献   

13.
Refugia are critical for the maintenance of biodiversity during the periods of Quaternary climatic oscillations. The long‐term persistence of refugial populations in a large continuous refugium has resulted in a homogenous pattern of genetic structure among populations, while highly structured evolutionary lineages characterize the restriction of refugial populations to smaller subrefugia. These mechanisms have resulted in the identification of hot spots of biodiversity within putative glacial refugia. We studied phylogeography of Potamon ibericum (Brachyura: Potamidae) in the drainages of the western Caucasus biodiversity hot spot (i.e., Colchis and the Caucasus) to infer spatial genetic structure and potential refugia for a freshwater crab in this region. These areas have traditionally considered as a refugium due to the presence of Tertiary relict species. We integrated population genetic data and historical demographic analysis from cytochrome oxidase subunit I sequences and paleoclimatic data from species distribution modeling (SDM). The results revealed the lack of phylogeographic structure and provided evidence for demographic expansion. The SDM presented a rather homogenous and large refugium that extended from northeast Turkey to Colchis during the last glacial period. In contrast to these findings, previous phylogeographic study on P. ibericum of the eastern Caucasus biodiversity hot spot (i.e., Hyrcania) identified multiple independent refugia. By combining these results, we explain the significance of this important western Palearctic hot spot of biological diversity in shaping the geographic distribution of intraspecific genetic diversity in a freshwater taxon.  相似文献   

14.
Hotspots of intraspecific diversity have been observed in most species, often within areas of putative Pleistocene refugia. They have thus mostly been viewed as the outcome of prolonged stability of large populations within the refugia. However, recent evidence has suggested that several other microevolutionary processes could also be involved in their formation. Here, we investigate the contribution of these processes to current range-wide patterns of genetic diversity in the Italian endemic mole Talpa romana, using both nuclear (30 allozyme loci) and mitochondrial markers (cytochrome b sequences). Southern populations of this species showed an allozyme variation that is amongst the highest observed in small mammals (most populations had an expected heterozygosity of 0.10 or above), which was particularly unexpected for a subterranean species. Population genetic, phylogeographic and historical demographic analyses indicated that T. romana populations repeatedly underwent allopatric differentiations followed by secondary admixture within the refugial range in southern Italy. A prolonged demographic stability was reliably inferred from the mitochondrial DNA data only for a population group located north and east of the Calabrian peninsula, showing comparatively lower levels of allozyme variability, and lacking evidence of secondary admixture with other groups. Thus, our results point to the admixture between differentiated lineages as the main cause of the higher levels of diversity of refugial populations. When compared with the Pleistocene evolutionary history recently inferred for species from both the same and other geographic regions, these results suggest the need for a reappraisal of the role of gene exchange in the formation of intraspecific hotspots of genetic diversity.  相似文献   

15.
Many mountain ranges have been strongly glaciated during the Quaternary ice ages, and the locations of glacial refugia of mountain plants have been debated for a long time. A series of detailed molecular studies, investigating intraspecific genetic variation of mountain plants in the European Alps, now allows for a first synopsis. A comparison of the phylogeographic patterns with geological and palaeoenvironmental data demonstrates that glacial refugia were located along the southwestern, southern, eastern and northern border of the Alps. Additional glacial refugia were present in central Alpine areas, where high-elevation plants survived the last glaciation on ice-free mountain tops. The observed intraspecific phylogeographies suggest general patterns of glacial survival, which conform to well-known centres of Alpine species diversity and endemism. This implies that evolutionary or biogeographic processes induced by climatic fluctuations act on gene and species diversity in a similar way.  相似文献   

16.
The phylogeography of three species of African bovids, the hartebeest (Alcelaphus buselaphus), the topi (Damaliscus lunatus), and the wildebeest (Connochaetes taurinus), is inferred from sequence variation of 345 sequences at the control region (d-loop) of the mtDNA. The three species are closely related (tribe Alcelaphini) and share similar habitat requirements. Moreover, their former distribution extended over Africa, as a probable result of the expansion of open grassland on the continent during the last 2.5 Myr. A combination of population genetics (diversity and structure) and intraspecific phylogeny (tree topology and relative branch length) methods is used to substantiate scenarios of the species history. Population dynamics are inferred from the distribution of sequence pairwise differences within populations. In the three species, there is a significant structuring of the populations, as shown by analysis of molecular variance (AMOVA) pairwise and hierarchical differentiation estimations. In the wildebeest, a pattern of colonization from southern Africa toward east Africa is consistent with the asymmetric topology of the gene tree, showing a paraphyletic position of southern lineages, as well as their relatively longer branch lengths, and is supported by a progressive decline in population nucleotide diversity toward east Africa. The phylogenetic pattern found in the topi and the hartebeest differs from that of the wildebeest: lineages split into monophyletic clades, and no geographical trend is detected in population diversity. We suggest a scenario where these antelopes, previously with wide pan-African distributions, became extinct except in a few refugia. The hartebeest, and probably also the topi, survived in refugia north of the equator, in the east and the west, respectively, as well as one in the south. The southern refugium furthermore seems to have been the only place where the wildebeest has survived.  相似文献   

17.
The expansion–contraction (EC) model predicts demographic and range contraction of temperate species during Pleistocene glaciations as a consequence of climate‐related habitat changes, and provides a paradigm for explaining the high intraspecific diversity found in refugia in terms of long‐term demographic stability. However, recent evidence has revealed a weak predictive power of this model for terrestrial species in insular and coastal settings. We investigated the Pleistocene EC dynamics and their evolutionary consequences on temperate species using the Maltese archipelago and its endemic lizard Podarcis filfolensis as a model system. The evolutionary and demographic history of P. filfolensis as inferred from mitochondrial and nuclear sequences data does not conform to the EC model predictions, supporting (i) demographic and spatial stability or expansion, rather than contraction, of the northern and southern lineages during the last glacial period; and (ii) a major role for allopatric differentiation primed by sea‐level dynamics, rather than prolonged demographic stability, in the formation of the observed genetic diversity. When combined with evidence from other Mediterranean refugia, this study shows how the incorporation of Pleistocene sea‐level variations in the EC model accounts for a reverse demographic and range response of insular and coastal temperate biotas relative to continental ones. Furthermore, this cross‐archipelago pattern in which allopatric diversity is formed and shaped by EC cycles resembles that seen between isolated populations within mainland refugia and suggests that the EC model, originally developed to explain population fluctuations into and out‐of refugia, may be appropriate for describing the demographic and evolutionary dynamics driving the high genetic diversity observed in these areas.  相似文献   

18.
Hotspots of intraspecific genetic diversity, which are of primary importance for the conservation of species, have been associated with glacial refugia, that is areas where species survived the Quaternary climatic oscillations. However, the proximate mechanisms generating these hotspots remain an open issue. Hotspots may reflect the long‐term persistence of large refugial populations; alternatively, they may result from allopatric differentiation between small and isolated populations, that later admixed. Here, we test these two scenarios in a widely distributed species of tree frog, Hyla orientalis, which inhabits Asia Minor and southeastern Europe. We apply a fine‐scale phylogeographic survey, combining fast‐evolving mitochondrial and nuclear markers, with a dense sampling throughout the range, as well as ecological niche modelling, to understand what shaped the genetic variation of this species. We documented an important diversity centre around the Black Sea, composed of multiple allopatric and/or parapatric diversifications, likely driven by a combination of Pleistocene climatic fluctuations and complex regional topography. Remarkably, this diversification forms a ring around the Black Sea, from the Caucasus through Anatolia and eastern Europe, with terminal forms coming into contact and partially admixing in Crimea. Our results support the view that glacial refugia generate rather than host genetic diversity and can also function as evolutionary melting pots of biodiversity. Moreover, we report a new case of ring diversification, triggered by a large, yet cohesive dispersal barrier, a very rare situation in nature. Finally, we emphasize the Black Sea region as an important centre of intraspecific diversity in the Palearctic with implications for conservation.  相似文献   

19.
The molecular phylogeography of the viperine snake, Natrix maura (Linnaeus, 1758), was investigated using complete sequences of the mitochondrial cytochrome b gene and genomic ISSR-PCR fingerprinting. In a total of 120 samples, 44 unique cytochrome b haplotypes were found which defined three major genetic lineages associated with samples from Morocco, Tunisia and Europe, respectively. The same lineages were supported by nuclear data. A possible fourth lineage exists in southern Spain. Genetic distances of cytochrome b sequences between the three main lineages were in the range of 3.9–5.6%, suggesting independent evolution since the early Pliocene. Distinction of the three major lineages at the subspecies or species level is discussed to account taxonomically for the high intraspecific variation in the viperine snake. A more detailed analysis of the European samples based on genetic diversity indices and a network reconstruction suggests a complex Pleistocene history for the viperine snake in Europe. Clear differentiation was found between populations south and north of the central Iberian mountain ranges, suggesting Pleistocene glacial refugia both in the southern and northern Iberian peninsula. In the south, genetic diversity was associated with the main river valleys, whereas northern haplotypes were more broadly distributed, indicating gene flow or postglacial range expansions. Unexpectedly high levels of genetic variation in southeastern France and northwestern Italy would be compatible with the hypothesis of a glacial refugium north of the Pyrenees or in Italy. However, due to the dependence of N. maura on warm climates, the assumption of a northern refugium seems unwarranted. We believe that further sampling in northern Spain is likely to reveal genetically diverse populations which could have served as sources for postglacial recolonization of France and Italy.  相似文献   

20.
The moor frog Rana arvalis is a lowland species with a broad Eurasiatic distribution, from arctic tundra through forest to the steppe zone. Its present-day range suggests that glacial refugia of this frog were located outside southern European peninsulas. We studied the species-wide phylogeographical pattern using sequence variation in a 682 base pairs fragment of mtDNA cytochrome b gene; 223 individuals from 73 localities were analysed. Two main clades, A and B, differing by c. 3.6% sequence divergence were detected. The A clade is further subdivided into two subclades, AI and AII differing by 1.0%. All three lineages are present in the Carpathian Basin (CB), whereas the rest of the species range, including huge expanses of Eurasian lowlands, are inhabited solely by the AI lineage. We infer that AII and B lineages survived several glacial cycles in the CB but did not expand, at least in the present interglacial, to the north. The geographical distribution and genealogical relationships between haplotypes from the AI lineage indicate that this group had two glacial refugia, one located in the eastern part of the CB and the other probably in southern Russia. Populations from both refugia contributed to the colonization of the western part of the range, whereas the eastern part was colonized from the eastern refugium only. The effective population size as evidenced by theta(ML) is an order of magnitude higher in the AI lineage than in the AII and B lineages. Demographic expansion was detected in all three lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号