首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since the cloning of the cDNA for X-linked ornithine transcarbamylase (OTC) in 1984, diagnostic accuracy of OTC deficiency for prenatal and carrier detection has been greatly improved by the use of linkage analysis. However, the use of RFLP-based diagnosis is limited in this and in other new mutation diseases. Here we report both the use of direct mutation detection by new PCR-based techniques and our experience with linkage-based diagnosis in 18 families. We have previously reported the use of chemical mismatch cleavage to detect mutations first in amplified mRNA and then in genomic DNA of patients. This technique has now been utilized for prenatal diagnosis. Primers for specific amplification of OTC exons 1, 3, 5, 9, and 10 have been developed and been employed to map deletions of the OTC gene in two families. These primers also have been used to detect alterations in the TaqI sites found in exons 1, 3, 5, and 9. Four novel mutations of the OTC gene leading to abolition of a TaqI site in the OTC cDNA were discovered. One of these mutations is in exon 1; two lie in exon 3; and one is in exon 9. In addition, we have used the PCR products as probes to identify the exon-specific bands seen on Southern blots and to map the polymorphic BamHI and MspI sites, which are commonly used for linkage analysis. This information will facilitate the interpretation of altered band patterns seen in deletion cases and in cases of point mutations affecting restriction sites. Utilization of the appropriate combination of these molecular techniques permitted accurate diagnostic evaluations in 17 of 18 families.  相似文献   

2.
Ornithine transcarbamylase (OTC) is one of 5 enzymes in the detoxification of ammonia to urea, and its deficiency, an X-linked disease, is the most common inborn error of urea genesis in humans. Because of the devastating nature of the disease there is a strong demand for reliable and rapid molecular analyses in OTC families in order to offer carrier detection and prenatal diagnosis. This paper presents the efficiency of direct and indirect mutation analyses in 22 OTC families using Southern blotting and polymerase chain reaction (PCR) amplification. For 89% of the mothers with an affected child, at least 1 RFLP of the OTC locus was informative concerning prenatal diagnosis. 100% informativity was reached by using the additional flanking markers 754 and LI.28. In total, 3 deletions (14%) and 1 TaqI site mutation (4.5%) in exon 3 were detected. 13 (60%) of our 22 mothers were found to be carriers, 9 of them being obligate carriers and 4 detected by biochemical testing. 4 mothers were excluded as carriers by DNA analyses, and in 5 mothers the carrier status could not be assessed positively. DNA analyses permitted carrier detection in 32% and carrier exclusion in 55% of 22 female relatives. Prenatal diagnosis was performed in 4 families: in 1 family by direct mutation detection and in 3 families by linkage analyses. It was possible to determine the mutation origin in 6 families, all of them with male probands. In 4 families the mutation had occurred during grandpaternal spermiogenesis, suggesting higher mutation rates in males, but in 2 cases it was the result of an event during maternal oogenesis, proving that new mutations in the OTC gene do also occur in eggs. Our recommended strategy for carrier detection and prenatal diagnosis in OTC deficiency is to examine routinely Southern blots of BamHI, EcoRI, HindIII, MspI, PstI and TaqI digestions using the OTCcDNA probe pH0731 and the flanking markers 754 and LI.28, as well as the TaqI-digested PCR products of exons 3, 5 and 9.  相似文献   

3.
We have explored the molecular pathology in 28 individuals homozygous or heterozygous for liver arginase deficiency (hyperargininemia) by a combination of Southern analysis, western blotting, DNA sequencing, and PCR. This cohort represents the majority of arginase-deficient individuals worldwide. Only 2 of 15 homozygous patients on whom red blood cells were available had antigenically cross-reacting material as ascertained by western blot analysis using anti-liver arginase antibody. Southern blots of patient genomic DNAs, cut with a variety of restriction enzymes and probed with a near-full-length (1,450-bp) human liver arginase cDNA clone, detected no gross gene deletions. Loss of a TaqI cleavage site was identified in three individuals: in a homozygous state in a Saudi Arabian patient at one site, at a different site in homozygosity in a German patient, and in heterozygosity in a patient from Australia. The changes in the latter two were localized to exon 8, through amplification of this region by PCR and electrophoretic analysis of the amplified fragment after treatment with TaqI; the precise base changes (Arg291X and Thr290Ser) were confirmed by sequencing. It is interesting that the latter nucleotide variant (Thr290Ser) was found to lie adjacent to the TaqI site rather than within it, though whether such a conservative amino acid substitution represents a true pathologic mutation remains to be determined. We conclude that arginase deficiency, though rare, is a heterogeneous disorder at the genotypic level, generally encompassing a variety of point mutations rather than substantial structural gene deletions.  相似文献   

4.
Early prenatal diagnosis of 21-hydroxylase (21-OHase) deficiency would enable treatment to be done to protect the fetus from masculinization and/or life-threatening adrenal crisis at birth. We report here the prenatal diagnosis of 21-OHase deficiency with human complement component C4 cDNA to probe DNA from chorionic villi at 10 weeks of gestation. Southern analysis with human C4 cDNA identified TaqI restriction fragment length polymorphisms (RFLPs) in the family. Family analysis with these RELPs showed that the fetus was not affected at greater than 99% probability, because the frequency of recombination between the 21-OHase B gene and the C4 gene would be extremely low.  相似文献   

5.
We have developed a method that allows the prenatal DNA diagnosis of ornithine transcarbamylase (OTC) deficiency by using a single fetal nucleated erythrocyte (NRBC) isolated from maternal blood. OTC gene analysis of a male patient (TF) with early onset OTC deficiency was performed by single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing. To investigate the possible prenatal diagnosis of OTC deficiency, maternal blood was obtained at 13 weeks of gestation of a subsequent pregnancy, from the mother of patient TF. NRBCs in the maternal blood were separated by using the density gradient method and then collected with a micromanipulator. The entire genome of a single NRBC was amplified by primer extension preamplification (PEP). The human leukocyte antigen (HLA)-DQ alpha genotype and sex were determined from small aliquots of the PEP product. The HLA-DQ alpha genotype of each of the parents of the male patient was also determined. Once a single NRBC had been identified as being of fetal origin, the OTC gene was analyzed by using the restriction fragment length polymorphism (RFLP) method. DNA analysis revealed a point mutation in exon 9 of the OTC gene in the OTC-deficient patient (TF). All NRBCs retrieved from maternal blood were successfully identified as being of fetal origin by HLA-DQ alpha genotyping and sex determination. RFLP analysis demonstrated that the fetal OTC gene was normal. This is the first study to successfully diagnose OTC deficiency prenatally, by using a single fetal NRBC from the maternal circulation. Such prenatal DNA diagnosis is non-invasive and can be applied to other genetic diseases, including autosomal and X-linked diseases. Received: 19 December 1997 / Accepted: 14 February 1998  相似文献   

6.
To define the molecular basis for the TaqI site alteration in the ornithine transcarbamylase (OTC) (E.C.2.1.3.3) gene of a female patient with mild OTC deficiency, we used a combination of genomic amplification followed by direct sequencing and oligodeoxyribonucleotide hybridization. We obtained evidence for a C-to-T substitution in exon 5 (codon 141) of this gene. This mutation generates a stop codon, in place of Arg, at amino acid 109 of the mature OTC protein. The mutation arose, de novo, in a germ cell of one of the parents.  相似文献   

7.
Two additional restriction fragment length polymorphisms (RFLPs) have been identified at the human ornithine transcarbamylase (OTC) locus. Approximately 11% of women are heterozygous for an RFLP characterized by polymorphic bands at 3.7 and 3.6 kilobasepairs (kbp) observed after DNA digestion with TaqI. Twenty-nine percent of women are heterozygous for an RFLP characterized by polymorphic bands at 18.0 and 5.2 kbp observed after digestion with BamHI. Thus, in combination with the previously reported RFLPs identified using MspI, the X chromosomes in approximately 80% of women at risk for having a son with OTC deficiency are distinguishable by RFLPs at the OTC locus. Furthermore, we show that these RFLPs will be useful in families for prenatal diagnosis of OTC deficiency, carrier detection, and carrier exclusion.  相似文献   

8.
Summary A single base substitution is responsible for the PI-Z mutation in alpha-1-antitrypsin (AAT) deficiency. The Z mutation, which is in exon V of the AAT gene, was analysed directly using a primer designed with a single base substitution in the DNA sequence. During the polymerase chain reaction with this primer, a restriction enzyme site was created in the exon-V-amplified DNA sequence; this site was present in the normal allele (M form) but absent in the Z form. Here, the design of the primer and the application of the designer primer for prenatal diagnosis of chorion villus samples (CVS) for AAT deficiency is described. The method provides a simple rapid means of prenatal diagnosis of AAT deficiency within a day of the collection of the CVS. The detection of the nucleotide base change in AAT deficiency at the Z mutation site provides the opportunity for accurate prenatal diagnosis where no tissue is available from an AAT-affected individual.  相似文献   

9.
DNA samples from five unrelated Japanese patients with 21-hydroxylase (21-OHase) deficiency were studied by Southern analysis using human 21-OHase cDNA. Patterns seen after digestion with not only TaqI but also KpnI showed that two out of the five patients were homozygous for a deletion of the 21-OHase B gene. This result supports the report that the 21-OHase B gene is functional. In the other three, smaller mutations might be responsible for the disorder. The parents of one of the two patients with the deletion had a common ancestor. Hybridization patterns of DNA from members of the family of the patient were consistent with an autosomal recessive mode of inheritance of the deletion that correlates with the clinical phenotype. The deletion segregated with HLA-Aw 24; Bw 61; Cw 3. Heterozygous carriers of 21-OHase deficiency could be detected by comparing the patterns as well as the HLA haplotypes in this family. The application of the family study to the prenatal diagnosis is also discussed.  相似文献   

10.
We studied 37 unrelated families with a history of 21-hydroxylase deficiency (CYP21D) for eight common mutations and gene deletions in the 21-hydroxylase (CYP21) gene. We found de novo mutations in the CYP21 gene in two CYP21D patients. Analysis for eight common mutations in the 21-hydroxylase gene as well as large gene deletions was accomplished using polymerase chain reaction (PCR) followed by amplified created restriction site (ACRS) or restriction fragment length polymorphism (RFLP) and Southern blot followed by hybridization to a CYP21-specific probe. Linkage analysis was performed using microsatellite markers flanking the CYP21 gene. Ten short tandem repeat (STR) markers were used to confirm parentage in the two de novo mutation cases. In two prenatal diagnosis cases, an intron 2-13A/C>G mutation was identified in the proband, but not in the fetus, although the proband and fetus had identical linkage markers. Subsequently, the mutation was confirmed to be absent in the parents' genome and misparentage was ruled out. Our findings are consistent with previous studies showing a de novo mutation frequency of approximately 1.0-1.5% in the CYP21 gene. This new mutation rate is high relative to the rate of approximately one in one million for other autosomal recessive disorders. Thus, the de novo mutation rate in the CYP21 gene is not negligible. It must be considered and discussed in prenatal diagnosis and genetic counseling for this relatively common inherited disorder.  相似文献   

11.
In this paper we reviewed the different methods presently available for prenatal diagnosis of hemoglobin disorders and the impact of this technology in the control of beta-thalassemia in several Mediterranean populations. The vast majority of the inherited hemoglobinopathies can now be detected in the fetus by amniocyte or trophoblast DNA analysis. alpha-thalassemias, delta beta-thalassemias and gamma delta beta-thalassemias, which are usually caused by a gross structural rearrangement of the DNA, may be directly detected by Southern blot analysis. Only a few beta-thalassemia lesions are caused by gene deletion or affect a restriction recognition site and thus may be directly identified by this method. The major part of beta-thalassemia are due to single nucleotide substitution, small deletion or addition which do not alter a restriction recognition site. These mutations may be directly detected by complementary oligonucleotide probes. Alternatively, when normal or affected children are available, fetal diagnosis may be accomplished by linkage analysis with polymorphic restriction sites. Fetal blood analysis is used at present time for those cases presenting too late in the pregnancy for characterization of the molecular defect and in prospective parents in whom the defect is not known. Introduction of prenatal diagnosis in combination with carrier screening in several mediterranean populations led to a consistent reduction in the incidence of homozygous beta-thalassemia.  相似文献   

12.
Ornithine transcarbamylase (OTC) deficiency is an X-linked trait and is one of the most frequent of the inherited urea cycle enzyme deficiencies. Most male patients with OTC deficiency develop a hyperammonemic crisis and die in the neonatal period or in early infancy. In contrast to those patients, in some male patients the disease first becomes overt in adolescence or during the reproductive age period. In the present report, we describe six such male patients who first developed clinical signs at ages ranging from 6 to 58 years, all of whom came from a limited area of the northern part of Kyushu Island in southern Japan. The mutation analysis disclosed a R40H mutation in exon 2 of the OTC gene in each of these patients. Transmission of this mutant gene through paternal lineage as well as through maternal lineage was documented in one family. The levels of mRNA of the mutant OTC gene expressed in transfected Cos 1 cells and in the liver tissue obtained by biopsy in one patient were both similar to those of the wild-type gene. The activity of the mutant OTC was, however, decreased to a level of 28% of the wild-type OTC, and the levels of the mutant OTC protein expressed in Cos 1 cells were decreased, as assessed by western blot analysis. Apparent K m values of the mutant enzyme for ornithine (1.1 mM) and carbamylophosphate (2.0 mM) were similar to those of the wild-type enzyme. Both enzymes gave similar pH-dependency profiles, giving a maximal activity at pH 7.8–7.9. Activity of wild-type OTC expressed in Cos 1 cells did not change after five cycles of freezing and thawing, whereas that of the mutant OTC decreased to 17% by this treatment. These results suggest that deficiency is due to inactivation of the mutant OTC under certain conditions. Received: 15 May 1996  相似文献   

13.
We analyzed DNA from 13 males with ornithine transcarbamylase (OTC) deficiency for gene deletions and known point mutations using the polymerase chain reaction (PCR), allelle-specific oligonucleotide (ASO) hybridization, and Southern blotting with full-length OTC cDNA and exon-specific probes. Three patients were found to have deletions: one was missing the whole OTC gene; a second patient had a deletion of both exon 7 and 8; and the third had a deletion of exon 9. Only one of the remaining 10 patients had a known point mutation consisting of a G-to-A change in nucleotide 422 of the sense strand resulting in a glutamine substitution for arginine at amino acid 109 of the mature OTC protein. This study describes the integration of various molecular methods to screen OTC-deficient patients for deletions and points mutations. Two new deletions within the OTC gene are described.  相似文献   

14.
15.
Methylmalonic acidemia (MMA) can be caused by mutations in the gene coding for the methylmalonyl CoA mutase (MCM) apoenzyme or by mutations in genes required for provision of its adenosylcobalamin cofactor. We have characterized MCM activity, gene structure, and expression in a series of primary fibroblast cell lines derived from patients with MCM apoenzyme deficiency. Southern blot analysis reveals normal HindIII and TaqI polymorphisms but no gross insertions, deletions, rearrangements, or point mutations at restriction endonuclease recognition sequences. Northern blot analysis demonstrates that several cell lines have specifically decreased steady-state levels of MCM mRNA. At least six independent alleles can be delineated by a haplotype of HindIII and TaqI polymorphisms, the level of mRNA expression, and the biochemical phenotype of the cells. These studies confirm the wide phenotypic spectrum of MMA and provide molecular genetic evidence for a variety of independent alleles underlying this disorder.  相似文献   

16.
We have found in patients with ornithine transcarbamylase (OTC) deficiency from two Spanish families (A and B), replacement by A of G at the 3-end of exon 4 of the OTC gene. The same mutation is found in the spf-ash mouse, a rodent model of mild OTC deficiency, causing a neutral R129H mutation and inefficient splicing at the 5donor site of the exon 4-intron 4 junction, with resultant 4%–7% residual OTC activity. The mutation, detected in our patients using polymerase chain reaction (PCR) amplification of the ten OTC exons, single strand conformation polymorphism (SSCP) analysis and direct sequencing of PCR-amplified exon 4, results in the loss of a unique MspI restriction site which can be used for rapid diagnosis. The mutation was transmitted by the mother in family A and arose de novo in the patient in family B. Residual OTC activity, determined in a male and a female patient, was 1.3% and 3.5% of normal, respectively. Despite this low activity, the surviving patients have developed normally.  相似文献   

17.
Fragile-X-syndrome (FXS) is the most common type of inherited cognitive impairment. The underlying molecular alteration consists of a CGG-repeat amplification within the FMR-1 gene. The phenotype is only apparent once a threshold in the number of repeats has been exceeded (full mutation). The aim of this study was to characterize the FMR-1 CGG-repeat status in Argentine patients exhibiting mental retardation. A total of 330 blood samples from patients were analyzed by PCR and Southern blot analysis. Initially, DNA from 78 affected individuals were studied by PCR. Since this method is unable to detect high molecular weight alleles, however, we undertook a second approach using the Southern blotting technique to analyze the CGG repeat number and methylation status. Southern blot analysis showed an altered pattern in 14 out of 240 (6%) unrelated patients, with half of them presenting a mosaic pattern. Eight out of 17 families (47%) showed a (suggest deleting highlight). The characteristic FXS pattern was identified in 8/17 families (47%), and in 4 of these families 25% of the individuals presented with a mosaic model. The expansion from pre-mutation to full mutation was shown to occur both at the pre and post zygotic levels. The detection of FXS mutations has allowed us to offer more informed genetic counseling, prenatal diagnosis and reliable patient follow-up.  相似文献   

18.
The original test for the analysis of the CCG expansion at the FRAXE locus involves Southern blot analysis of HindIII digests. We show that, by using a different probe, the FRAXE mutation can be detected easily on the same EcoRI or EagI+EcoRI blots as are used for detection of FRAXA. Unexpectedly, we found that both the expansion and methylation status can be determined on a single EcoRI digest, because of the presence of a methylation-sensitive EcoRI site very close to the CCG repeat. We thus detected in a series of mentally retarded individuals previously tested for FRAXA expansion a FRAXE proband who led to the identification of a large sibship (7 of 10 children carrying a mutation). We also show that two fragile X families without FRAXA mutation that previously have been described by Oberlé et al. have the FRAXE expansion. In another family also ascertained initially by cytogenetic finding of a fragile X site, we performed the combined cytogenetic and molecular prenatal diagnosis of a mutated male fetus. All nine males (>3 years old) in whom we found a methylated mutation had mild mental retardation. Our results suggest that the threshold of repeat length for abnormal methylation and fragile-site expression may be smaller at FRAXE than at FRAXA.  相似文献   

19.
Summary We report a 2-year-old boy with Duchenne muscular dystrophy (DMD), glycerol kinase deficiency (GK) and adrenal hypoplasia congenita (AHC). At three weeks of age, the patient was hospitalized for the first time with symptoms of hypotone dehydration because of AHC, At present, he shows severe muscular hypotonia and developmental delay. The patient and his family were referred to us for prenatal diagnosis and carrier testing in the mother of the patient and the mother's sister, respectively. The patient's DNA was examined by Southern blot and polymerase chain reaction analyses, using cDNA and genomic probes within and around the dystrophin (DYS) locus. A deletion was revealed, spanning DXS28, the whole dystrophin locus, DXS84 and DXS148, whereas DXS67, DXS68 (pter) and OTC (cen) were found to be retained. The cytogenetically visible microdeletion was also seen in the patient's mother, but not in the mother's sister or the patient's maternal grandmother. Our findings support the locus order pter-DXS67-DXS68-DXS28-AHC-GK-DMD-cen.  相似文献   

20.
We have completely sequenced the adenine phosphoribosyltransferase (APRT) gene from each of six patients--five (I-V) from Iceland and one (VI) from Britain. Cases I and II shared a common ancestor six and seven generations ago, and cases I and V shared a common ancestor seven generations ago, but cases III and IV were unrelated to the above or to each other, over seven generations. Genomic DNA was amplified by PCR, subcloned into M13mp18, and sequenced. Genomic and PCR-amplified DNAs were also analyzed by restriction-enzyme digestion and Southern blotting. The same missense mutation was identified in all six patients. This mutation leads to the replacement of asp (GAC) by val (GTC), at amino acid position 65. The gene sequences from all patients were otherwise identical to our wild-type sequence. The homozygous nature of the mutation was confirmed by sequencing the PCR product directly. All six patients were homozygous for the 1.25-kb TaqI RFLP. The Icelandic patients were also homozygous for the 8-kb SphI RFLP, but the British patient was heterozygous at this site. These studies suggest that a founder effect is likely to be responsible for APRT deficiency in the Icelandic population. The finding of the same mutation in a patient from Britain suggests that this mutation may have originated in mainland Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号