首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.  相似文献   

2.
ABSTRACT: Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.  相似文献   

3.
Marine microbes have the potential for accumulating large quantities of lipids and are therefore suitable candidate as feedstock in unsaturated fatty acid production. The efficient utilisation of glycerol as an alternative carbon source to glucose was demonstrated in the fermentation of newly isolated thraustochytrid strains from the Queenscliff, Victoria, Australia. The isolates exhibited the presence of omega-3 and omega-6 polyunsaturated fatty acids, with the major fatty acids for all isolates being (as percent total fatty acid), palmitic acid (25.1–40.78%), stearic acid (4.24–13.2%), eicosapentaenoic acid EPA (2.31–8.5%) and docosapentaenoic acid (7.24–10.9%). Glycerol as a carbon source gave promising biomass growth with significant lipid and DHA productivity. An approximate three-fold increase in carotenoid content in all isolates was achieved when glycerol was used as a carbon source in the production medium.  相似文献   

4.
Much of the literature on omega-3 and omega-6 fatty acids suggests that desirable effects of omega-3 fatty acids are in part related to depletion of arachidonic acid (AA). However, in rats and humans, we have found that low doses of EPA actually elevate membrane AA phospholipid concentrations. In patients with schizophrenia, treatment with eicosapentaenoic acid (EPA) produced clinical improvement, but that improvement was greater at a dose of 2 g/day than at 4 g/day. The improvement was not significantly correlated with changes in either EPA or docosahexaenoic acid (DHA) but was highly significantly positively correlated with rises in red cell membrane AA. We suggest that elevation of concentrations of both AA and EPA in cell membranes may be important for health.  相似文献   

5.
The maintenance of optimal cognitive function is a central feature of healthy aging. Impairment in brain glucose uptake is common in aging associated cognitive deterioration, but little is known of how this problem arises or whether it can be corrected or bypassed. Several aspects of the challenge to providing the brain with an adequate supply of fuel during aging seem to relate to omega-3 fatty acids. For instance, low intake of omega-3 fatty acids, especially docosahexaenoic acid (DHA), is becoming increasingly associated with several forms of cognitive decline in the elderly, particularly Alzheimer's disease. Brain DHA level seems to be an important regulator of brain glucose uptake, possibly by affecting the activity of some but not all the glucose transporters. DHA synthesis from either alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA) is very low in humans begging the question of whether these DHA precursors are likely to be helpful in maintaining cognition during aging. We speculate that ALA and EPA may well have useful supporting roles in maintaining brain function during aging but not by their conversion to DHA. ALA is an efficient ketogenic fatty acid, while EPA promotes fatty acid oxidation. By helping to produce ketone bodies, the effects of ALA and EPA could well be useful in strategies intended to use ketones to bypass problems of impaired glucose access to the brain during aging. Hence, it may be time to consider whether the main omega-3 fatty acids have distinct but complementary roles in brain function.  相似文献   

6.
Dietary intake of omega-3 fatty acids has been positively correlated with cardiovascular and neuropsychiatric health in several studies. The high seafood intake by the Japanese and Greenland Inuit has resulted in low ratios of the omega-6 fatty acid arachidonic acid (AA, 20:4n-6) to eicosapentaenoic acid (EPA, 20:5n-3), with the Japanese showing AA:EPA ratios of approximately 1.7 and the Greenland Eskimos showing ratios of approximately 0.14. It was the objective of this study to determine the effect of supplementation with high doses (60 g) of flax and fish oils on the blood phospholipid (PL) fatty acid status, and AA/EPA ratio of individuals with Attention Deficit Hyperactivity Disorder (ADHD), commonly associated with decreased blood omega-3 fatty acid levels. Thirty adults with ADHD were randomized to 12 weeks of supplementation with olive oil (< 1% omega-3 fatty acids), flax oil (source of alpha-linolenic acid; 18:3n-3; alpha-LNA) or fish oil (source of EPA and docosahexaenoic acid; 22:6n-3; DHA). Serum PL fatty acid levels were determined at baseline and at 12 weeks. Flax oil supplementation resulted in an increase in alpha-LNA and a slight decrease in the ratio of AA/EPA, while fish oil supplementation resulted in increases in EPA, DHA and total omega-3 fatty acids and a decrease in the AA/EPA ratio to values seen in the Japanese population. These data suggest that in order to increase levels of EPA and DHA in adults with ADHD, and decrease the AA/EPA ratio to levels seen in high fish consuming populations, high dose fish oil may be preferable to high dose flax oil. Future study is warranted to determine whether correction of low levels of long-chain omega-3 fatty acids is of therapeutic benefit in this population.  相似文献   

7.
As a first step in determining the mechanism of action of specific fatty acids on immunological function of macrophages, a comparative study of the effect of long-chain polyunsaturated fatty acids (PUFA) in the medium was conducted in two macrophage cell lines, J774A.1 and WEHI-3. The baseline fatty-acid profiles of the two cell lines differed in the % distribution of saturated (SFA) and unsaturated fatty acids (UFA). J774A.1 cells had a higher % of SFA (primarily palmitic acid) than WEHI-3 cells. Conversely, WEHI-3 cells had a higher % of UFA (primarily oleic acid) than J774A.1 cells. Neither cell line had detectable amounts of alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA). The most abundant polyunsaturated fatty acid in both cells lines was arachidonic acid (AA). The efficiency of transport of fatty acids from the medium to the macrophages by two delivery vehicles (BSA complexes and ethanolic suspensions) was compared. Overall, fatty acids were transported satisfactorily by both delivery systems. Alpha-linolenic acid and doscosahexenoic acid (DHA) were transported more efficiently by the ethanolic suspension system. Linoleic acid (LA) was taken up more completely than ALA, and DHA was taken up more completely than EPA by both cell cultures and delivery systems. A dose-response effect was demonstrated for LA, ALA, EPA and DHA in both J774A.1 and WEHI-3 cells. Addition of polyunsaturated fatty acids (PUFA) to the cell cultures modified the total lipid fatty acid composition of the cells. The presence of ALA in the culture medium resulted in a significant decrease in AA in both cell lines. The omega-3/omega-6 fatty acid ratio (omega-3/omega-6), polyunsaturated/saturated fatty acid ratio (P/S), and unsaturation index (UI) increased directly with the amount of PUFA and omega-3 fatty acid provided in the medium. The results indicate that the macrophage cell lines have similar, but not identical, fatty acid profiles that may be the result of differences in fatty acid metabolism. These distinctions could in turn produce differences in immunological function. The ethanol fatty-acid delivery system, when compared with the fatty acid-BSA complex system, is preferable for measurement of dose-response effects, because the cellular fatty acid content increased in proportion to the amount of fatty acid provided in the medium. Similar dose-response results were observed in a previous in vivo study using flaxseed, rich in ALA, as a source of PUFA.  相似文献   

8.
Omega-3 fatty acids from fish oils and cardiovascular disease   总被引:10,自引:0,他引:10  
Fish and fish oils contain the omega-3 fatty acids known as eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Epidemiological studies have shown an inverse relation between the dietary consumption of fish containing EPA/DHA and mortality from coronary heart disease. These relationships have been substantiated from blood measures of omega-3 fatty acids including DHA as a physiological biomarker for omega-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction patients with a substantial reduction in the risk of sudden cardiac death. The cardioprotective effects of EPA/DHA are widespread, appear to act independently of blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall effects include anti-arrhythmic, blood triglyceride-lowering, anti-thrombotic, anti-inflammatory, endothelial relaxation, plus others. Current dietary intakes of EPA/DHA in North America and elsewhere are well below those recommended by the American Heart Association for the management of patients with coronary heart disease. (Mol Cell Biochem 263: 217–225, 2004)  相似文献   

9.
The immunoregulatory effects of dietary omega-3 fatty acids are still not fully characterized. The aim of this study was to determine whether dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake limits intestinal ischemia–reperfusion (IR) injury. To test this, rats were fed either control or EPA/DHA supplemented diet for 3 weeks following which they underwent either a sham or an IR surgical protocol. A significant reduction in mucosal damage was observed after EPA/DHA supplemented diet as reflected by maintenance of total protein content. To address the underlying mechanisms of protection, we measured parameters of oxidative stress, intestinal and serological cytokines and intestinal eicosanoids. Interestingly, EPA/DHA fed animals displayed a higher activity of oxidative stress enzyme machinery, i.e., superoxide dismutase and catalase in addition to a reduction in total nitrate/nitrite content. While no changes in cytokines were observed, eicosanoid analyses of intestinal tissue revealed an increase in metabolites of the 12-lipoxygenase pathway following IR. Further, IR in EPA/DHA fed animals was accompanied by a significant increase of 17,18-epoxyeicosatetraenoic acid, 8-Iso prostaglandin F and thromboxane B3, by more than 12-, 6-, 3-fold, respectively. Thus, the data indicate that EPA/DHA supplementation may be able to reduce early intestinal IR injury by anti-oxidative and anti-inflammatory mechanisms.  相似文献   

10.
Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.  相似文献   

11.
Fish oil omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against arrhythmia and sudden cardiac death by largely unknown mechanisms. Recent in vitro and in vivo studies demonstrate that arachidonic acid (AA) metabolizing cytochrome P450-(CYP) enzymes accept EPA and DHA as efficient alternative substrates. Dietary EPA/DHA supplementation causes a profound shift of the cardiac CYP-eicosanoid profile from AA- to EPA- and DHA-derived epoxy- and hydroxy-metabolites. CYP2J2 and other CYP epoxygenases preferentially epoxidize the ω-3 double bond of EPA and DHA. The corresponding metabolites, 17,18-epoxy-EPA and 19,20-epoxy-DHA, dominate the CYP-eicosanoid profile of the rat heart after EPA/DHA supplementation. The (ω-3)-epoxyeicosanoids show highly potent antiarrhythmic properties in neonatal cardiomyocytes, suggesting that these metabolites may specifically contribute to the cardioprotective effects of omega-3 fatty acids. This hypothesis is discussed in the context of recent findings that revealed CYP-eicosanoid mediated mechanisms in cardiac ischemia-reperfusion injury and maladaptive cardiac hypertrophy.  相似文献   

12.
Cardiovascular disease prevention and treatment   总被引:1,自引:1,他引:0  
The incidence of fatal and non-fatal cardiovascular disease (sudden cardiac death (SCD), myocardial infarction, others) varies, depending on conventional risk factors. However, in Western countries, like the US or Germany, incidences of fatal and non-fatal cardiovascular disease are far higher than in countries like Japan. In the present article, these differences are discussed and related to eicosapentaenoic acid (C20:5omega-3 or C20:5n-3; EPA) and docosahexaenoic acid (C22:6omega-3; DHA). Dietary intake of EPA and DHA and a number of other factors determine levels of EPA and DHA in an individual—best assessed as the omega-3 index, defined as the percentage of EPA and DHA in red cells, and analyzed in a standardized fashion. A review of the literature, expanded by measurements of the omega-3 index, indicates that the risk of sudden cardiac death correlates inversely with the omega-3 index. For persons with an omega-3 index <4%, risk is tenfold, as compared to persons with an omega-3 index >8%. A similar, less-pronounced, correlation exists for non-fatal cardiovascular disease. EPA and DHA have anti-arrhythmic and anti-atherosclerotic mechanisms of action. In large-scale intervention studies, intake of EPA and DHA has been demonstrated to reduce SCD and non-fatal cardiovascular events. Assessing or recommending dietary intake of EPA and DHA does not predict the resulting omega-3 index. Taken together, the omega-3 index is a biomarker to assess a person's content of omega-3 fatty acids, and thus the risk for sudden cardiac death, as well as non-fatal cardiovascular events. EPA and DHA prevent fatal and non-fatal cardiovascular disease and complications of congestive heart failure.  相似文献   

13.
Serotonin (5HT) released from aggregating platelets at sites of vascular injury is a known mitogen for vascular endothelial cells. Recent studies have indicated that regenerating endothelial cells at sites of vessel wall injury may play a role in the development of restenosis by synthesizing and releasing growth factors for vascular smooth muscle cells, proliferation of which may result in the development of neointima. Diets rich in fish oils (omega-3 fatty acids) are associated with reduced risk of cardiovascular disease including atherosclerosis and restenosis. This study examined the effect of the omega-3 and other fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on 5HT induced endothelial cell proliferation. Among the fatty acids examined only EPA and DHA could reverse the mitogenic effect of 5HT on vascular endothelial cells, whereas oleic acid or palmitic acid did not have any effect. When added together, EPA and DHA potentiate each other in reversing the mitogenic effect of 5HT. EPA and DHA also inhibited the 5HT-induced increase in the 5HT2 receptor mRNA, without a change in the receptor density or affinity. This data suggests that one of the mechanisms by which omega-3 fatty acids may attenuate the development of atherosclerosis or restenosis is to inhibit the mitogen induced growth of vascular endothelial cells, which attenuates the release of growth factors for vascular smooth muscle cells.  相似文献   

14.
Inflammation is a defensive response to injury and infection, but excessive or inappropriate inflammation contributes to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of omega-3 polyunsaturated fatty acids (PUFA) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) indicate their beneficial impact on human diseases in which inflammation is suspected as a key component of the pathogenesis. Although the mechanism of EPA and DHA action is still not fully defined in molecular terms, recent studies have revealed that, during the course of acute inflammation, omega-3 PUFA-derived mediators including resolvins and protectins with potent anti-inflammatory and pro-resolving properties are produced. In this review, we provide an overview of the formation and actions of EPA-derived anti-inflammatory lipid mediator resolvin E1.  相似文献   

15.
Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (omega-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-alpha) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that omega-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.  相似文献   

16.
Fatty acid drug discovery (FADD) is defined as the identification of novel, specialized bioactive mediators that are derived from fatty acids and have precise pharmacological/therapeutic potential. A number of reports indicate that dietary intake of omega-3 fatty acids and limited intake of omega-6 promotes overall health benefits. In 1929, Burr and Burr indicated the significant role of essential fatty acids for survival and functional health of many organs. In reference to specific dietary benefits of differential omega-3 fatty acids, docosahexaenoic and eicosapentaenoic acids (DHA and EPA) are transformed to monohydroxy, dihydroxy, trihydroxy, and other complex mediators during infection, injury, and exercise to resolve inflammation. The presented FADD approach describes the metabolic transformation of DHA and EPA in response to injury, infection, and exercise to govern uncontrolled inflammation. Metabolic transformation of DHA and EPA into a number of pro-resolving molecules exemplifies a novel, inexpensive approach compared to traditional, expensive drug discovery. DHA and EPA have been recommended for prevention of cardiovascular disease since 1970. Therefore, the FADD approach is relevant to cardiovascular disease and resolution of inflammation in many injury models. Future research demands identification of novel action targets, receptors for biomolecules, mechanism(s), and drug-interactions with resolvins in order to maintain homeostasis.  相似文献   

17.
Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA) are critical for infant and childhood brain development, but levels of the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are often low in the Western diet. Increasing evidence from both epidemiological and intervention studies, reviewed here, indicates that DHA supplementation, during pregnancy, lactation, or childhood plays an important role in childhood neurodevelopment. Arachidonic acid (ARA) is also important for infant growth and development. Several studies have demonstrated positive associations between blood DHA levels and improvements on tests of cognitive and visual function in healthy children. Controlled trials also have shown that supplementation with DHA and EPA may help in the management of childhood psychiatric disorders, and improve visual and motor functions in children with phenylketonuria. In all studies, DHA and EPA supplementation is typically well tolerated. Further research is needed to determine optimal doses for efficacy at different developmental ages. The potential long-term benefits of early LCPUFA supplementation also require consideration.  相似文献   

18.
It has been suggested that the polyunsaturated omega-3 fatty acid, docosahexaenoic acid (DHA), can adopt unique closely packed arrays in lipid bilayers (Glomset and Applegate. (1986) J. Lipid Res. 27, 658-680). These conformations are predicted on the basis of molecular dynamics calculations and are in contrast to the expanded conformations characteristic of omega-6 unsaturated fatty acids. It has also been suggested that close packing of omega-3 acyl chains could have a substantial affect on the physical properties of lipid bilayers (e.g. permeability). We report here some experimental tests of these predictions. Surface pressure-area experiments have been carried out on DHA and its mixtures with stearic and oleic acids. At low surface pressures DHA is more expanded than oleic acid. Extrapolation to the high surface pressures characteristic of lipid bilayers indicates that the area per molecule of DHA is only marginally less than that for oleic acid. Thus there is no compelling evidence to suggest that the average area per molecule of the omega-3 fatty acid is substantially different from the omega-6 fatty acid at high surface pressures. Experiments also show that the permeability of bilayers to glucose and the rates of dissociation of pyrenyl cholesterol from bilayers were similar for bilayers containing DHA compared to bilayers containing oleic acid or linoleic acid.  相似文献   

19.
Very long chain polyunsaturated fatty acids (VLCPUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are valuable commodities that provide important human health benefits. We report the transgenic production of significant amounts of AA and EPA in Brassica juncea seeds via a stepwise metabolic engineering strategy. Using a series of transformations with increasing numbers of transgenes, we demonstrate the incremental production of VLCPUFAs, achieving AA levels of up to 25% and EPA levels of up to 15% of total seed fatty acids. Both fatty acids were almost exclusively found in triacylglycerols, with AA located preferentially at sn-2 and sn-3 positions and EPA distributed almost equally at all three positions. Moreover, we reconstituted the DHA biosynthetic pathway in plant seeds, demonstrating the practical feasibility of large-scale production of this important omega-3 fatty acid in oilseed crops.  相似文献   

20.
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept EPA and DHA to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test this hypothesis, 20 healthy volunteers were treated with an EPA/DHA supplement and analyzed for concomitant changes in the circulatory and urinary levels of AA-, EPA-, and DHA-derived metabolites produced by the cyclooxygenase-, lipoxygenase (LOX)-, and CYP-dependent pathways. Raising the Omega-3 Index from about four to eight primarily resulted in a large increase of EPA-derived CYP-dependent epoxy-metabolites followed by increases of EPA- and DHA-derived LOX-dependent monohydroxy-metabolites including the precursors of the resolvin E and D families; resolvins themselves were not detected. The metabolite/precursor fatty acid ratios indicated that CYP epoxygenases metabolized EPA with an 8.6-fold higher efficiency and DHA with a 2.2-fold higher efficiency than AA. Effects on leukotriene, prostaglandin E, prostacyclin, and thromboxane formation remained rather weak. We propose that CYP-dependent epoxy-metabolites of EPA and DHA may function as mediators of the vasodilatory and cardioprotective effects of omega-3 fatty acids and could serve as biomarkers in clinical studies investigating the cardiovascular effects of EPA/DHA supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号