首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Wang L  Lin M 《Journal of bacteriology》2007,189(5):2046-2054
We identified and biochemically characterized a novel surface-localized autolysin from Listeria monocytogenes serotype 4b, an 86-kDa protein consisting of 774 amino acids and known from our previous studies as the target (designated IspC) of the humoral immune response to listerial infection. Recombinant IspC, expressed in Escherichia coli, was purified and used to raise specific rabbit polyclonal antibodies for protein characterization. The native IspC was detected in all growth phases at a relatively stable low level during a 22-h in vitro culture, although its gene was transiently transcribed only in the early exponential growth phase. This and our previous findings suggest that IspC is upregulated in vivo during infection. The protein was unevenly distributed in clusters on the cell surface, as shown by immunofluorescence and immunogold electron microscopy. The recombinant IspC was capable of hydrolyzing not only the cell walls of the gram-positive bacterium Micrococcus lysodeikticus and the gram-negative bacterium E. coli but also that of the IspC-producing strain of L. monocytogenes serotype 4b, indicating that it was an autolysin. The IspC autolysin exhibited peptidoglycan hydrolase activity over a broad pH range of between 3 and 9, with a pH optimum of 7.5 to 9. Analysis of various truncated forms of IspC for cell wall-hydrolyzing or -binding activity has defined two separate functional domains: the N-terminal catalytic domain (amino acids [aa] 1 to 197) responsible for the hydrolytic activity and the C-terminal domain (aa 198 to 774) made up of seven GW modules responsible for anchoring the protein to the cell wall. In contrast to the full-length IspC, the N-terminal catalytic domain showed hydrolytic activity at acidic pHs, with a pH optimum of between 4 and 6 and negligible activity at alkaline pHs. This suggests that the cell wall binding domain may be of importance in modulating the activity of the N-terminal hydrolase domain. Elucidation of the biochemical properties of IspC may have provided new insights into its biological function(s) and its role in pathogenesis.  相似文献   

2.
The 97-kDa protein Mtx21, derived from the 100-kDa mosquitocidal protein (Mtx) from Bacillus sphaericus SSII-1 by the deletion of the putative signal sequence, was expressed as a fusion protein with glutathione S-transferase in Escherichia coli, and the fusion protein was purified by affinity chromatography. The fusion protein bound to glutathione agarose was cleaved with thrombin to release the Mtx21 protein. The 97-kDa Mtx21 protein was found to be toxic to Culex quinquefasciatus larvae with a 50% lethal concentration of 15 ng/ml. Treating Mtx21 with crude mosquito larval gut extracts gave rise to two major peptides of 70 and 27 kDa. Treating the 97-kDa Mtx21 protein with trysin also gave rise to a similar proteolytic cleavage pattern. N-terminal sequencing showed that the 27-kDa peptide was derived from the N-terminal region of the 97-kDa protein and that the 70-kDa protein was from the C-terminal region of the 97-kDa protein. The 27-kDa peptide has all the previously identified regions of homology with the catalytic peptides of the ADP-ribosyltransferase toxins, such as pertussis toxin S1 peptide, while the 70-kDa peptide has three internal regions of homology.  相似文献   

3.
A DNA fragment containing 2,079 base pairs from Bacillus circulans CGMCC 1416 was cloned using degenerate PCR and inverse PCR. An open reading frame containing 981 bp was identified that encoded 326 amino acids residues, including a putative signal peptide of 31 residues. The deduced amino acid sequence showed the highest identity (68.1%) with endo-beta-1,4-D-mannanase from Bacillus circulans strain K-1 of the glycoside hydrolase family 5 (GH5). The sequence encoding the mature protein was cloned into the pET-22b(+) vector and expressed in Escherichia coli as a recombinant fusion protein containing an N-terminal hexahistidine sequence. The fusion protein was purified by Ni2+ affinity chromatography and its hexahistidine tag cleaved to yield a 31-kDa beta-mannanase having a specific activity of 481.55 U/mg. The optimal activity of the purified protein, MANB48, was at 58 degrees C and pH 7.6. The hydrolysis product on substrate locust bean gum included a monosaccharide and mainly oligosaccharides. The recombinant MANB48 may be of potential use in the feed industry.  相似文献   

4.
Autolytic activity in the soluble and sediment fractions of sonicates of the spiral and the coccoid form of Campylobacter upsaliensis could not be demonstrated by native (nondenaturing) polyacrylamide gel electrophoresis (PAGE). Autolysins were detected, however, by using denaturing sodium dodecyl sulfate (SDS)-PAGE gels containing either purified Escherichia coli peptidoglycan or whole cells of Micrococcus luteus (Micrococcus lysodeikticus) as the turbid substrate, with subsequent renaturation by treatment with Triton X-100 buffer. In renaturing gels that contained Escherichia coli peptidoglycan, 14 putative autolytic bands ranging from 200 to 12 kDa were detected. In similar gels containing whole cells of M. luteus, only a single band appeared with a molecular mass of 34 kDa. This band corresponded to one of the bands present in the gels containing Escherichia coli peptidoglycan. This common autolysin was isolated by adsorbing it from Campylobacter upsaliensis soluble fractions onto M. luteus cells and then subjecting these cells to renaturing SDS-PAGE in gels containing Escherichia coli peptidoglycan. The 34-kDa autolysin differed from a single 51-kDa autolysin unique to the M. luteus cells, and when isolated from an SDS-PAGE gel, was pure when tested by isoelectric focusing. The N-terminal amino acid sequence analysis showed the first 15 amino acids of the 34-kDa autolysin to have 67% identity to a part of antigenic protein PEB4 of Campylobacter jejuni. The purified autolysin was used to immunize rabbits and the antibodies produced precipitated autolytic activity from cell lysates. The specificity of the antibodies was shown by Western blotting: only a single specific band occurred, with a molecular mass of 34 kDa, and thus it seems unlikely that the 34-kDa autolysin was derived from any of the other autolysins that were detected.  相似文献   

5.
One of the major soybean allergens, Gly m Bd 28K, is suggested to be biosynthesized as a preproprotein form, which would be composed of a signal peptide, Gly m Bd 28K and the C-terminal peptide (the 23-kDa peptide). However, the 23-kDa peptide has never been characterized. In the present study, we prepared a monoclonal antibody (mAb) against a recombinant 23-kDa peptide expressed in Escherichia coli to detect the 23-kDa peptide in soybean. Several proteins were detected by immunoblotting with the mAb. All of the proteins were shown to have the identical N-terminal amino acid sequence, suggesting that the proteins correspond to the C-terminal part of the Gly m Bd 28K precursor. Furthermore, Gly m Bd 28K and the 23-kDa peptide were observed to come out at the 21st day after flowering and to locate in the crystalloid part of protein storage vacuoles in growing cotyledons. Some of the 23-kDa peptides were shown to be glycoproteins with an N-linked glycan moiety and exhibited the binding to IgE antibodies in the sera of patients sensitive to soybean. The binding of the peptides to IgE antibodies was suggested to be predominantly dependent on their glycan moiety. This study proves the occurrence of the 23-kDa peptide in soybean and that it is a new allergen.  相似文献   

6.
A gene encoding of glutamyl-specific endopeptidase precursor from Bacillus licheniformis has been cloned in Escherichia coli cells. The recombinant protein was expressed and accumulated as cytoplasmic insoluble inclusion bodies. Washed inclusion bodies were solubilized in 6 M guanidine-HCL in the presence of reducing agent. The following precursor renaturation was performed by fast frequent dilution method. The highest yield of the refolded protein was achieved at pH value of 8.5 and 4 degrees C. The renaturation process was accompanied by a gradual splitting of Glu(-48)/Thr(-47) and Glu(-13)/Lys(-12) peptide bonds. A 26-kDa protein proved to be an end product of in vitro renaturation. The mature glutamyl endopeptidase with a molecular mass of 25 kDa was obtained after a limited proteolysis of the 26-kDa protein was performed by subtilisin or trypsin. The 26-kDa protein was purified by gel filtration on a Superdex 75 column. Comparative characteristics of the thermal stability and catalytic properties of the 26-kDa and 25-kDa proteins showed that complete cleavage of the N-terminal pro-peptide by exogenous proteinase is necessary for a final packing and activation of the B. licheniformis glutamyl endopeptidase.  相似文献   

7.
The O-linked oligosaccharides (O-glycans) in mammalian glycoproteins are classified according to their core structures. Among the most common is the core 1 disaccharide structure consisting of Galbeta1-->3GalNAcalpha1-->Ser/Thr, which is also the precursor for many extended O-glycan structures. The key enzyme for biosynthesis of core 1 O-glycan from the precursor GalNAc-alpha-Ser/Thr is UDP-Gal:GalNAc-alpha-Ser/Thr beta3-galactosyltransferase (core1 beta3-Gal-T). Core 1 beta3-Gal-T activity, which requires Mn2+, was solubilized from rat liver membranes and purified 71,034-fold to apparent homogeneity (>90% purity) in 5.7% yield by ion exchange chromatography on SP-Sepharose, affinity chromatography on immobilized asialo-bovine submaxillary mucin, and gel filtration chromatography on Superose 12. The purified enzyme is free of contaminating glycosyltransferases. Two peaks of core 1 beta3-Gal-T activity were identified in the final step on Superose 12. One peak of activity contained protein bands on non-reducing SDS-PAGE of approximately 84- and approximately 86-kDa disulfide-linked dimers, whereas the second peak of activity contained monomers of approximately 43 kDa. Reducing SDS-PAGE of these proteins gave approximately 42- and approximately 43-kDa monomers. Both the 84/86-kDa dimers and the 42/43-kDa monomers have the same novel N-terminal sequence. The purified enzyme, which is remarkably stable, has an apparent Km for UDP-Gal of 630 microm and an apparent Vmax of 206 micromol/mg/h protein using GalNAcalpha1-O-phenyl as the acceptor. The reaction product was generated using asialo-bovine submaxillary mucin as an acceptor; treatment with O-glycosidase generated the expected disaccharide Galbeta1-->3GalNAc. These studies demonstrate that activity of the core 1 beta1,3-Gal-T from rat liver is contained within a single, novel, disulfide-bonded, dimeric enzyme.  相似文献   

8.
A 33-kDa alkaline serine protease secreted by Penicillium citrinum strain 52-5 is shown to be an allergenic agent in this fungus. The protein, designated Pen c 1, was purified by sequential DEAE-Sepharose and carboxymethyl (CM)-Sepharose chromatographies. Pen c 1 has a molecular mass of 33 kDa and a pI of 7.1. The caseinolytic enzyme activity of this protein was studied. The protein binds to serum IgE from patients allergic to Penicillium citrinum. The cDNA encoding Pen c 1 is 1420 bp in length and contains an open reading frame for a 397-amino-acid polypeptide. Pen c 1 codes for a larger precursor containing a signal peptide, a propeptide and the 33-kDa mature protein. Sequence comparison revealed that Pen c 1 possesses several features in common with the alkaline serine proteases of the subtilisin family. The essential Asp, His, and Ser residues that make up the catalytic triad of serine proteases are well conserved. Northern blots demonstrated that mRNAs transcribed from this gene are present at early stages of culture. The allergen encoded by Pen c 1 gene was expressed in Escherichia coli as a fusion protein bearing an N-terminal histidine-affinity tag. The protein, purified by affinity chromatography with a yield of 130 mg of pure protein per liter of culture, was able to bind to both a monoclonal anti-Pen c 1 antibody and IgE from the serum of patients allergic to Penicillium. Recombinant Pen c 1 can therefore be expressed in E. coli in large quantities and should prove useful as a standardized specific allergen for immuno-diagnosis of atopic disorders. In addition, full caseinolytic enzyme activity could be generated in the purified recombinant protein by sulfonation and renaturation, followed by removal of the affinity tag, indicating that the refolded protein can assume the same conformation as the native protein.  相似文献   

9.
A novel pepX gene was cloned from isolated DNA of Lactococcus lactis by PCR. The deduced amino acid sequence of the 89-kDa protein showed 94, 93, 65, and 44% identity with the pepX protein from Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Lactobacillus delbruecki subsp. bulgaricus, and Lactobacillus helveticus, respectively, and contained a serine protease G-K-S-Y-L-G consensus motif. The pepX gene has been cloned into pET17b and was expressed at a high level in Escherichia coli BL21 (DE3) LysS. PepX was purified to approximate homogeneity with ammonium sulfate precipitation and DEAE Sephadex A-50 chromatography. Optimal pepX activity was observed at pH 8.0 and 37 degrees C. According to SDS-PAGE analysis, pepX has a molecular mass of approximately 89 kDa. The peptidase can remove completely the unwanted X-Pro from the N-terminal of the target protein, releasing the naturally active protein and peptide, revealing a prospective application of pepX in large-scale production of pharmaceutical protein and peptide products.  相似文献   

10.
A gene (aman6) encoding endo-1,6-alpha-D-mannanase, a yeast mannan backbone degrading enzyme from Bacillus circulans was cloned. The putative aman6 was 1,767 base pairs long and encoded a mature 1,6-alpha-D-mannanase protein of 589 amino acids and a signal peptide of 36 amino acids. The purified mature 1,6-alpha-D-mannanase from the Escherichia coli transformant showed 61-kDa protein, and N-terminal amino acid sequence and other general properties of the recombinant enzyme were identical to those of 1,6-alpha-D-mannanase from Bacillus circulans TN-31.  相似文献   

11.
12.
PreS domain of Hepatitis B virus (HBV) surface antigen is a good candidate for an effective vaccine as it activates both B and T cells besides binding to hepatocytes. This report deals with overexpression and purification of adr subtype of surface antigen that is more prevalent in Pakistan. PreS region, comprising 119 aa preS1 region plus a 55 aa preS2 region plus 11 aa from the N-terminal S region, was inserted in pET21a+ vector, cloned in E. coli DH5alpha cells and expressed in E. coli BL21 codon+ cells. The conditions for over expression were optimized using different concentrations of IPTG (0.01-5 mM), and incubating the cells at different temperatures (23-41 degrees C) for different durations (0-6 h). The cells were grown under the given optimized conditions (0.5 mM IPTG concentration at 37 degrees C for 4 h), lysed by sonication and the protein was purified by ion exchange chromatography. On the average, 24.5 mg of recombinant protein was purified per liter of culture. The purified protein was later lyophilized and stored at -80 degrees.  相似文献   

13.
By proteomic analysis we found a 21-kDa protein (P21) from Acidithiobacillus ferrooxidans ATCC 19859 whose synthesis was greatly increased by growth of the bacteria in pyrite, thiosulfate, elemental sulfur, CuS, and ZnS and was almost completely repressed by growth in ferrous iron. After we determined the N-terminal amino acid sequence of P21, we used the available preliminary genomic sequence of A. ferrooxidans ATCC 23270 to isolate the DNA region containing the p21 gene. The nucleotide sequence of this DNA fragment contained a putative open reading frame (ORF) coding for a 23-kDa protein. This difference in size was due to the presence of a putative signal peptide in the ORF coding for P21. When p21 was cloned and overexpressed in Escherichia coli, the signal peptide was removed, resulting in a mature protein with a molecular mass of 21 kDa and a calculated isoelectric point of 9.18. P21 exhibited 27% identity and 42% similarity to the Deinococcus radiodurans thiosulfate-sulfur transferase (rhodanese; EC 2.8.1.1) and similar values in relation to other rhodaneses, conserving structural domains and an active site with a cysteine, both characteristic of this family of proteins. However, the purified recombinant P21 protein did not show rhodanese activity. Unlike cytoplasmic rhodaneses, P21 was located in the periphery of A. ferrooxidans cells, as determined by immunocytochemical analysis, and was regulated depending on the oxidizable substrate. The genomic context around gene p21 contained other ORFs corresponding to proteins such as thioredoxins and sulfate-thiosulfate binding proteins, clearly suggesting the involvement of P21 in inorganic sulfur metabolism in A. ferrooxidans.  相似文献   

14.
The gene encoding a type I pullulanase was identified from the genome sequence of the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. In addition, the homologous gene was isolated from a gene library of Anaerobranca horikoshii and sequenced. The proteins encoded by these two genes showed 39% amino acid sequence identity to the pullulanases from the thermophilic anaerobic bacteria Fervidobacterium pennivorans and Thermotoga maritima. The pullulanase gene from A. gottschalkii (encoding 865 amino acids with a predicted molecular mass of 98 kDa) was cloned and expressed in Escherichia coli strain BL21(DE3) so that the protein did not have the signal peptide. Accordingly, the molecular mass of the purified recombinant pullulanase (rPulAg) was 96 kDa. Pullulan hydrolysis activity was optimal at pH 8.0 and 70 degrees C, and under these physicochemical conditions the half-life of rPulAg was 22 h. By using an alternative expression strategy in E. coli Tuner(DE3)(pLysS), the pullulanase gene from A. gottschalkii, including its signal peptide-encoding sequence, was cloned. In this case, the purified recombinant enzyme was a truncated 70-kDa form (rPulAg'). The N-terminal sequence of purified rPulAg' was found 252 amino acids downstream from the start site, presumably indicating that there was alternative translation initiation or N-terminal protease cleavage by E. coli. Interestingly, most of the physicochemical properties of rPulAg' were identical to those of rPulAg. Both enzymes degraded pullulan via an endo-type mechanism, yielding maltotriose as the final product, and hydrolytic activity was also detected with amylopectin, starch, beta-limited dextrins, and glycogen but not with amylose. This substrate specificity is typical of type I pullulanases. rPulAg was inhibited by cyclodextrins, whereas addition of mono- or bivalent cations did not have a stimulating effect. In addition, rPulAg' was stable in the presence of 0.5% sodium dodecyl sulfate, 20% Tween, and 50% Triton X-100. The pullulanase from A. gottschalkii is the first thermoalkalistable type I pullulanase that has been described.  相似文献   

15.
The intracellular beta-xylosidase was induced when Streptomyces thermoviolaceus OPC-520 was grown at 50 degrees C in a minimal medium containing xylan or xylooligosaccharides. The 82-kDa protein with beta-xylosidase activity was partially purified and its N-terminal amino acid sequence was analyzed. The gene encoding the enzyme was cloned, sequenced, and expressed in Escherichia coli. The bxlA gene consists of a 2,100-bp open reading frame encoding 770 amino acids. The deduced amino acid sequence of the bxlA gene product had significant similarity with beta-xylosidases classified into family 3 of glycosyl hydrolases. The bxlA gene was expressed in E. coli, and the recombinant protein was purified to homogeneity. The enzyme was a monomer with a molecular mass of 82 kDa. The purified enzyme showed hydrolytic activity towards only p-nitrophenyl-beta-D-xylopyranoside among the synthetic glycosides tested. Thin-layer chromatography analysis showed that the enzyme is an exo-type enzyme that hydrolyze xylooligosaccharides, but had no activity toward xylan. High activity against pNPX occurred in the pH range 6.0-7.0 and temperature range 40-50 degrees C.  相似文献   

16.
Staphylococcus epidermidis is the most common microorganism that is isolated from the cerebrospinal fluid (CSF) shunt infection patients. Vitronectin adsorbed on the surface of implants may mediate bacterial adhesion and colonization. To characterize vitronectin-binding properties, we analyzed S. epidermidis BD5703 isolated from a CSF shunt infection. Expression of vitronectin-binding protein(s) depended on culture media. Two proteins (60 and 52 kDa) were purified from vitronectin affinity chromatography. Two other vitronectin-binding proteins (21 and 16 kDa) were purified from an ion-exchange column. All purified proteins blocked bacterial binding of immobilized vitronectin significantly except the 16-kDa protein. The N-terminal sequences of the 21- and 16-kDa proteins did not show any appreciable amino acid sequence homology. The 52-kDa protein was sequenced by mass spectrometry and identified as an autolysin. This report demonstrates that interaction of vitronectin with multiple recognition sites on BD5703 surface may contribute to bacterial colonization. Received: 6 September 2000 / Accepted: 6 November 2000  相似文献   

17.
The uptake of maltose and maltodextrins in gram-negative bacteria is mediated by an ATP-dependent transport complex composed of a periplasmic maltose-binding protein (MBP) and membrane-associated proteins responsible for the formation of a membrane pore and generation of energy to drive the translocation process. In this work, we report the purification and in vitro functional analysis of MBP, encoded by the malE gene, of the plant pathogen Xanthomonas citri, responsible for the canker disease affecting citrus plants throughout the world. The X. citri MBP is composed of 456 amino acids, displaying a low amino acid identity (16% throughout the sequence) compared to the Escherichia coli K12 ortholog. The X. citri malE gene was cloned into a pET28a vector, and the encoded protein was expressed and purified by affinity chromatography as a His-tag N-terminal fusion peptide produced by the E. coli BL21 strain. Enhanced levels of soluble protein were achieved with static cultures kept overnight at 23 degrees C. Ability to bind immobilized amylose, the emission of intrinsic fluorescence and circular dichroism spectra indicated that the purified recombinant protein preserved both conformation and biological activity of the native protein. The availability of the recombinant MBP will contribute to the functional and structural analysis of the maltose and maltodextrin uptake system of the plant pathogen X. citri.  相似文献   

18.
A cell envelope 57-kDa proteinase, a cytoplasmic 65-kDa dipeptidase, and a 75-kDa aminopeptidase were purified from Lactobacillus sanfrancisco CB1 sourdough lactic acid bacterium by sequential fast protein liquid chromatography steps. All of the enzymes are monomers. The proteinase was most active at pH 7.0 and 40 degrees C, while aminopeptidase and dipeptidase had optima at pH 7.5 and 30 to 35 degrees C. Relatively high activities were observed at the pH and temperature of the sourdough fermentation. The proteinase is a serine enzyme. Urea-polyacrylamide gel electrophoresis of digest of alpha s1- and beta-caseins showed differences in the pattern of peptides released by the purified proteinase and those produced by crude preparations of the cell envelope proteinases of Lactobacillus delbrueckii subsp. bulgaricus B397 and Lactococcus lactis subsp. lactis SK11. Reversed-phase fast protein liquid chromatography of gliadin digests showed a more-complex peptide pattern produced by the proteinase of Lactobacillus sanfrancisco CB1. The dipeptidase is a metalloenzyme with high affinity for dipeptides containing hydrophobic amino acids but had no activity on tripeptides or larger peptides. The aminopeptidase was also inhibited by metal-chelating agents, and showed a broad N-terminal hydrolytic activity including di- and tripeptides. Km values of 0.70 and 0.44 mM were determined for the dipeptidase on Leu-Leu and the aminopeptidase on Leu-p-nitroanilide, respectively.  相似文献   

19.
A 36 kDa chitinase was purified by ion exchange and gel filtration chromatography from the culture supernatant of Bacillus thuringiensis HD-1. The chitinase production was independent of the presence of chitin in the growth medium and was produced even in the presence of glucose. The purified chitinase was active at acidic pH, had an optimal activity at pH 6.5, and showed maximum activity at 65 degrees C. Of the various substrates, the enzyme catalyzed the hydrolysis of the disaccharide 4-MU(GlnAc)(2) most efficiently and was therefore classified as an exochitinase. The sequence of the tryptic peptides showed extensive homology with Bacillus cereus 36 kDa exochitinase. The 1083 bp open reading frame encoding 36 kDa chitinase was amplified with primers based on the gene sequence of B. cereus 36 kDa exochitinase. The deduced amino-acid sequence showed that the protein contained an N-terminal signal peptide and consisted of a single catalytic domain. The two conserved signature sequences characteristic of family 18 chitinases were mapped at positions 105-109 and 138-145 of Chi36. The recombinant chitinase was expressed in a catalytically active form in Escherichia coli in the vector pQE-32. The expressed 36 kDa chitinase potentiated the insecticidal effect of the vegetative insecticidal protein (Vip) when used against neonate larvae of Spodoptera litura.  相似文献   

20.
To allow for structural analysis of the human acetylcholinesterase (hAChE) subunit, a series of eukaryotic vectors was designed for efficient expression. Several eukaryotic multicistronic expression vectors were tested in various mammalian cell lines. All expression vectors contained the selectable neo gene under control of a weak promoter, while the hAChE cDNA was under control of the cytomegalovirus (CMV) immediate-early or Rous sarcoma virus long terminal repeat (RSV LTR) or simian virus 40 (SV40) early promoters. Optimal production and secretion of recombinant hAChE (rehAChE) was achieved in the embryonal kidney 293 cell line transfected either with the RSV-hAChE or with CMV-hAChE expression vectors. Clones expressing and secreting as much as 5-25 pg of enzyme per cell per 24 h were obtained without resorting to coamplification techniques or continuous maintenance of cells under selective pressure. The purified (specific activity of 6000 units per mg protein) homodimer and tetramer enzyme molecules displayed typical AChE biochemical properties: a Km value of 120 microM for acetylthiocholine; a kcat value of 3.9 x 10(5)/min, and selective by AChE-specific inhibitors. Catalytic subunit dimers (130 kDa) exhibit differential N-glycosylation patterns, and upon reduction resolve into 67- and 70-kDa monomeric subunits. These two forms appear as a single discrete 62-kDa band following deglycosylation by N-glycanase. The N-terminal amino acid sequence analysis of the purified mature enzyme suggests the existence of two alternative cleavage sites for the removal of the signal peptide, in which the 'mature' position 1 is either Ala31 or Gly33. Both of these positions conform with the consensus signal peptide recognition sequences and demonstrate bidirected processing of signal peptides on a native molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号