首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The mechanism of uncoupling of oxidative phosphorylation by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), oleic acid, and chloroform is further investigated by measuring in the presence of a certain concentration of each type of uncoupler (i) the mitochondrial P/O and respiratory control ratios upon progressive inhibition of the redox pumps and (ii) delta mu H and the rate of either electron transfer or adenosine 5'-triphosphate (ATP) hydrolysis in static head upon progressive inhibition of either the redox or the adenosine triphosphatase (ATPase) proton pumps. Chloroform exhibits in all the experiments a behavior very different from that of FCCP and oleic acid. For example, upon addition of antimycin to chloroform-supplemented mitochondria, the respiratory control ratio remains unchanged and the P/O ratio slightly increases (in a certain range of inhibition) instead of decreasing as expected for an increased membrane conductance (and as indeed measured in the presence of either FCCP or oleic acid). From the kinetic model of chemiosmotic free energy coupling described by Pietrobon and Caplan [Pietrobon, D., & Caplan, S.R. (1986) Biochemistry 25, 7690-7696] all the results can be simulated by making the assumptions that (i) chloroform acts specifically at the level of the proton pumps and intrinsically uncouples electron transfer and ATP hydrolysis/synthesis from proton translocation and (ii) FCCP and oleic acid have a mixed behavior and act both as protonophores and as intrinsic uncouplers of the redox pumps (but not of the ATPases). The consistency of the results with the alternative hypothesis that the three agents interfere either with localized energy coupling sites or with a direct interaction between proton pumps is discussed.  相似文献   

2.
The relationship between rate of ATP synthesis, JATP, and value of the proton electrochemical gradient, delta mu H, has been analyzed in intact mitochondria. Onset of phosphorylation causes a depression of delta mu H of 1.5 kJ/mol. There is a close parallelism between inhibition of JATP and restoration of delta mu H to its state-4 value during titrations with oligomycin or atractyloside. Titrations with ionophores display the following features: (a) delta mu H can be depressed by 3-4 kJ/mol by valinomycin + K+ without affecting the rate of ATP synthesis; (b) uncouplers abolish JATP completely while depressing delta mu H by 3 kJ/mol; (c) complete abolition of ATP synthesis by inhibitors of electron transport is accompanied by a depression of delta mu H of only 1 kJ/mol. The results indicate that: (a) there is a close functional relationship between redox and ATPase H+ pumps, whereby inhibition of electron transfer is accompanied by simultaneous inhibition of the ATPase H+ pumps; and (b) uncoupling of oxidative phosphorylation is not due to depression of delta mu H per se. The consistence of the present data with either a chemiosmotic model where delta mu H is the sole and obligatory intermediate for energy coupling, or models where there is a direct transfer of energy between the two pumps is discussed.  相似文献   

3.
Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies   总被引:2,自引:0,他引:2  
The thermodynamic and kinetic properties associated with intrinsic uncoupling in a six-state model of a redox proton pump have been studied by computing the flow-force relations for different degrees of coupling. Analysis of these relations shows the regulatory influence of the thermodynamic forces on the extent and relative contributions of redox slip and proton slip. Inhibition has been introduced into the model in two different ways, corresponding to possible modes of action of experimental inhibitors. Experiments relating the rate of electron transfer to delta microH at static head upon progressive inhibition of the pumps have been simulated considering (1) the limiting case that the nonzero rate of electron transfer at static head is only due to intrinsic uncoupling (no leaks) and (2) the experimentally observed case that about 30% of the nonzero rate of electron transfer at static head is due to a constant proton leakage conductance in parallel with the pumps, the rest being due to intrinsic uncoupling. The same simulations have been performed for experiments in which the rate of electron transfer is varied by varying the substrate concentration rather than by using an inhibitor. The corresponding experimental results obtained by measuring delta microH and the rate of electron transfer at different succinate concentrations in rat liver mitochondria are presented. Comparison between simulated behavior and experimental results leads to the general conclusion that the typical relationship between rate of electron transfer and delta microH found in mitochondria at static head could certainly be a manifestation of some degree of intrinsic uncoupling in the redox proton pumps.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Several different proton pumps were used to generate a proton motive force (delta p, proton motive force across the mitochondrial inner membrane) in isolated rat liver mitochondria, and the relationship between delta p and pump rate was investigated by titrating with various inhibitors of the pumps. It was found that this relationship was the same for mitochondria respiring on succinate irrespective of whether respiration was inhibited with malonate, antimycin or cyanide, indicating that the relationship was independent of the redox state of the respiratory chain. When delta p was generated by either the cytochrome bc1 complex, cytochrome oxidase, both together, or ATP hydrolysis (and transport), the reaction rates (in moles of electrons or ATP) were in the ratio of close to 3:1.5:1:1, respectively, at all accessible values of delta p. This suggests that the proton stoichiometries (H+/e and H+/ATP, where H+/e is the number of protons translocated vectorially across the inner membrane per electron transferred by the respiratory chain and H+/ATP is the number of protons translocated vectorially per ATP molecule hydrolyzed externally) were in the ratio of close to 1:2:3:3, respectively, at all values of delta p. Possible reasons for previous contradictory results are suggested.  相似文献   

5.
Preprotein translocation in E. coli requires ATP, the membrane electrochemical potential delta mu H+, and translocase, an enzyme with an ATPase domain (SecA) and the membrane-embedded SecY/E. Studies of translocase and proOmpA binds to the SecA domain. Second, SecA binds ATP. Third, ATP-binding energy permits translocation of approximately 20 residues of proOmpA. Fourth, ATP hydrolysis releases proOmpA. ProOmpA may then rebind to SecA and reenter this cycle, allowing progress through a series of transmembrane intermediates. In the absence of delta mu H+ or association with SecA, proOmpA passes backward through the membrane, but moves forward when either ATP and SecA or a membrane electrochemical potential is supplied. However, in the presence of delta mu H+ (fifth step), proOmpA rapidly completes translocation. delta mu H(+)-driven translocation is blocked by SecA plus nonhydrolyzable ATP analogs, indicating that delta mu H+ drives translocation when ATP and proOmpA are not bound to SecA.  相似文献   

6.
J Shioi  S Naito    T Ueda 《The Biochemical journal》1989,258(2):499-504
Measurements have been made of the ATP-dependent membrane potential (delta psi) and pH gradient (delta pH) across the membranes of the synaptic vesicles purified from bovine cerebral cortex, using the voltage-sensitive dye bis[3-propyl-5-oxoisoxazol-4-yl]pentamethine oxanol and the delta pH-sensitive fluorescent dye 9-aminoacridine respectively. A pre-existing small delta pH (inside acidic) was detected in the synaptic vesicles, but no additional significant contribution by MgATP to delta pH was observed. In contrast, delta psi (inside positive) increased substantially upon addition of MgATP. This ATP-dependent delta psi was reduced by thiocyanate anion (SCN-), a delta psi dissipator, or carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a protonmotive-force dissipator. Correspondingly, a substantially larger glutamate uptake occurred in the presence of MgATP, which was inhibited by SCN- and FCCP. A nonhydrolysable analogue of ATP, adenosine 5'-[beta gamma-methylene]triphosphate, did not substitute for ATP in either delta psi generation or glutamate uptake. The results support the hypothesis that a H+-pumping ATPase generates a protonmotive force in the synaptic vesicles at the expense of ATP hydrolysis, and the protonmotive force thus formed provides a driving force for the vesicular glutamate uptake. The delta psi generation by ATP hydrolysis was not affected by orthovanadate, ouabain or oligomycin, but was inhibited by N-ethylmaleimide, quercetin, trimethyltin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid. These results indicate that the H+-pumping ATPase in the synaptic vesicle is similar to that in the chromaffin granule, platelet granule and lysosome.  相似文献   

7.
Addition of bovine serum albumin to state 4 mitochondria results in a depression of the proton leak and of the resting respiration of 70 and 25%, respectively. The conductance membrane potential diagram, both in the ohmic and in the non-ohmic region, shows that in the presence of bovine serum albumin the level of ohmic conductance is lowered while that of non-ohmic conductance is increased toward higher delta psi values. The same effect is observed during operation of the different proton pumps. Addition of chloroform affects the conductance membrane potential diagram in the following manner: there is no effect in the ohmic region with all pumps, while there is an effect in the non-ohmic region either at site III or at sites II plus III but not at site II. This suggests a possible effect of chloroform at the level of the cytochrome oxidase proton pump. During titration with oligomycin of the ATPase proton pump the conductance potential diagram shows a region of non-ohmicity only in the presence but not in the absence of an ATP-regenerating system. Protonophoric uncouplers such as carbonyl cyanide p(trifluoromethoxy)phenylhydrazone and intrinsic uncouplers such as chloroform have different effects on the relationship between rates of charge translocation and of oxygen consumption, and thus on the pump stoichiometries, in that the slope of the diagram is modified by the latter but not by the former. The differential effects of protonophores and of intrinsic uncouplers on the stoichiometries have been analyzed by computer simulations and represent an additional criterion to distinguish between extrinsic and intrinsic mechanisms of uncoupling.  相似文献   

8.
The passive membrane conductance LH1 of rat liver mitochondria has been measured and compared with the quantity nJesh/delta microHsh (n = H+/e stoichiometry; Jesh = rate of electron transfer in static head) over a delta microH range. The two curves approach each other only in the lower part of the range, while they sharply diverge at large values of delta microH. Thus nJesh/delta microHsh cannot be considered to be a measure of LH1 in the upper delta microH region. Only a fraction of the static head electron flow is accounted for by futile proton cycling via leaks. Contaminating open membrane fragments or completely leaky mitochondria can be responsible for only a small part of the residual rate of oxygen consumption. We conclude that a large part of static head respiration must have yet another cause and propose it to be intrinsic uncoupling of the respiratory chain enzymes.  相似文献   

9.
D Pietrobon  S R Caplan 《Biochemistry》1986,25(23):7690-7696
The results of double-inhibitor and uncoupler-inhibitor titrations have been simulated and analyzed with a nonlinear model of delocalized protonic coupling obtained by linking two proton pump models of the kind studied by Pietrobon and Caplan [Pietrobon, D., & Caplan, S. R. (1985) Biochemistry 24, 5764-5776] through their common intermediate delta mu H. It is shown that the results predicted by a delocalized chemiosmotic model are highly dependent on the kind of relationships existing between rate of ATP synthesis, Jp, and delta mu H and rate of electron transfer, Je, and delta mu H. With nonlinear flow-force relationships all the results reported so far are not necessarily inconsistent with the delocalized chemiosmotic model provided that the relationships between rates and delta mu H satisfy the following requirements: Jp/delta mu H increases and/or Je/delta mu H decreases as (delta mu H) increases.  相似文献   

10.
From the chemiosmotic hypothesis it follows that no change is expected in potency of an uncoupler to inhibit an energy-driven reaction in an energy-transducing membrane if the energy-requiring part of the reaction, the so-called secondary proton pump, is partially inhibited by a specific, tightly bound inhibitor. An increase in potency upon inhibition of the primary pump may be expected, due to a lower rate of the total proton flow that can be used by the secondary pump and dissipated by the uncoupler. Contrary to this prediction several uncouplers (S13, SF6847, 2,4-dinitrophenol, valinomycin + nigericin) show an increase in uncoupling efficiency in ATP-driven reverse electron transfer (reversal) upon inhibition of the secondary pump in this reaction, the NADH:Q oxidoreductase, by rotenone. The increase in uncoupling efficiency is proportional to the decrease in the rate of reversal, that is to the decrease in concentration of active secondary pump. Similarly, upon inhibition of the primary pump, the ATPase, with oligomycin, an increase in uncoupling efficiency was found, also proportional to the decrease in the rate of reversal. When the pore-forming uncoupler gramicidin was used, no change in uncoupling potency was found upon inhibition of NADH:Q oxidoreductase. Inhibition of the ATPase, however, resulted in a proportionally lower uncoupling titre for gramicidin, just as was found for S13 in the presence of oligomycin. A difference was also found in the relative concentrations of S13 and gramicidin required to stimulate ATP hydrolysis or to inhibit reversal. The amount of S13 needed to stimulate ATP hydrolysis was clearly higher than the amount needed to inhibit reversal. On the contrary, the titre of gramicidin for both actions was about the same. To explain these results we propose that gramicidin uncouples via dissipation of the bulk delta mu H+, whereas the carrier-type uncouplers preferentially interfere with the direct energy transduction between the ATPase and redox enzymes. This is in accordance with the recently developed collision hypothesis.  相似文献   

11.
The photoaffinity label 8-azido-ATP has been used to study the effect of inhibition of ATP synthase on ATP-driven reverse electron transfer from succinate to NAD+ ('reversal'), succinate- and NADH-driven ATP synthesis and ATP-Pi exchange. In reversal, where ATPase functions as primary proton pump, inactivation by covalently bound nitreno-ATP results in an inhibition that is proportional to the inactivation of ATP hydrolysis, or, consequently, with the concentration of inactivated ATP synthases. Up to 60% inactivation of the reversal rate does not lead to a decrease in delta mu H+. Inhibition of ATP synthase as secondary proton pump results in case of NADH-driven ATP synthesis in a proportional inhibition, but with succinate as substrate ATP synthesis is less than proportionally inhibited, compared with inactivation of ATP hydrolysis. Inhibition of one of the primary pumps of NADH-driven ATP synthesis, the NADH:Q oxidoreductase, with rotenone also resulted in an inhibition of the rate of ATP synthesis proportional to that of the NADH oxidation. ATP-Pi exchange is much more affected than ATP hydrolysis by photoinactivation with 8-azido-ATP. Contrary to reversal and NADH-driven ATP synthesis the rate of ATP-Pi exchange does not depend linearly, but quadratically on the concentration of active ATP synthases. The observed proportional relationships between inhibition of the primary or secondary pump and the inhibition of the overall energy-transfer reactions do not support the existence of a pool intermediate in energy-transduction reactions. However, the results are consistent with a direct transfer of energy from redox enzymes to ATP synthase and vice versa.  相似文献   

12.
The role of the electrochemical potential difference of proton (delta mu H+) in protein translocation across the membrane of Escherichia coli was examined in detail using an efficient in vitro assay system (Yamada, H., Tokuda, H., and Mizushima, S. (1989) J. Biol. Chem. 264, 1723-1728). Delta mu H+ reduced the level of ATP necessary for the efficient translocation of OmpF-Lpp, a chimeric model secretory protein. The apparent Km value of the translocation reaction for ATP was lower by 2 orders of magnitude in the presence of delta mu H+ than in its absence. The membrane potential and delta pH, both of which are components of delta mu H+, independently lowered the apparent Km value of the translocation reaction for ATP. An ATP-generating system also lowered the level of ATP required for translocation in the absence of delta mu H+ but not in its presence. It is proposed that ADP formed during protein translocation lowers the affinity of the putative translocation machinery for ATP and that the removal of ADP from the secretory machinery, a possible critical step in the translocation reaction, is stimulated in the presence of either delta mu H+, an ATP-generating system, or a higher concentration of ATP.  相似文献   

13.
The effect of the transmembrane potential (delta psi) and the proton concentration gradient (delta pH) across the chromaffin granule membrane upon the rate and extent of catecholamine accumulation was studied in isolated bovine chromaffin granules. Freshly isolated chromaffin granules had an intragranular pH of 5.5 as measured by [14C]methylamine distribution. The addition of ATP to a suspension of granules resulted in the generation of a membrane potential, positive inside, as measured by [14C]thiocyanate (SCN-) distribution. The addition of carboxyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a proton translocator, resulted in a reversal of the potential to negative values (measured by [3H]tetramethylphenylphosphonium (TPMP+)) approaching -90 mV. Changing the external pH of a granular suspension incubated with FCCP produced a linear perturbation in the measured potential from positive to negative values, which can be explained by the distribution of protons according to their electrochemical gradient. When ammonia (1 to 50 mM) was added to highly buffered suspensions of chromaffin granules there was a dose-dependent decrease in the transmembrane proton gradient (delta pH) and an increase in the membrane potential (delta psi). On the other hand, thiocyanate or FCCP, at varying concentration, produced a dose-related collapse of the membrane potential and had no effect upon the transmembrane proton gradient. The addition of larger concentrations of catecholamines caused a decrease in the transmembrane proton gradient and an increase in the membrane potential. Time-resolved influx of catecholamines into the granules was studied radiochemically using low external catecholamine concentrations. The accumulation of epinephrine or norepinephrine was over one order of magnitude greater in the presence of ATP than in its absence. The rate and extent of amine accumulation was found to be related to the magnitude of the membrane potential at fixed transmembrane proton concentration (delta pH) values. Likewise, the accumulation was related to the magnitude of the delta pH at fixed membrane potential values. These results suggest that the existence of both a transmembrane proton gradient and a membrane potential are required for optimal catecholamine accumulation to occur.  相似文献   

14.
To further consider the thermochemical method as a useful approach for active transport research and to investigate the characteristic of a proton electrochemical potential (delta mu H+) across the membrane, the energetics of lactose active transport across Escherichia coli membrane vesicles coupled with an artificial electron donor (phenazine methosulfate-ascorbate) has been investigated. The results were compared with those obtained with an enzyme-associated electron donor (lactate dehydrogenase-D-lactate). The oxidation of an electron donor provided the energy necessary for the transport process. The observed higher heat of ascorbate oxidation reaction in the presence of a proton ionophore (carbonyl cyanide m-chlorophenylhydrazone) further confirmed the formation of delta mu H+ across the membrane. Part of the oxidation energy was utilized to form delta mu H+. Comparison of the energetics revealed that the magnitudes of delta Hox (the enthalpy of the oxidation reaction) and delta Hm (the enthalpy of the formation of delta mu H+) in the two energy sources were comparable (-46 kcal/mol of ascorbate to -40 kcal/mol of D-lactate for delta Hox and 9.6 kcal/mol of ascorbate to 14 kcal/mol of D-lactate for delta Hm). Comparable and low value (about 1%) was also found in the free energy transfer (defined by delta Gm/delta Gox) from the oxidation reaction to the formation of delta mu H+. These results, in combination with the close values of delta mu H+ observed in the two systems, suggested that the characteristic of the created delta mu H+ was independent of the energy source. Examination of delta Hm might provide the information on the ratio of the number of protons produced, as 1 mol of two different electron donors was oxidized. The oxidation reaction in the presence of membrane vesicles was discussed.  相似文献   

15.
Methanosarcina mazei Gö1 couples the methyl transfer from methyl-tetrahydromethanopterin to 2-mercaptoethanesulfonate (coenzyme M) with the generation of an electrochemical sodium ion gradient (delta mu Na+) and the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate with the generation of an electrochemical proton gradient (delta muH+). Experiments with washed inverted vesicles were performed to investigate whether both ion gradients are used directly for the synthesis of ATP. delta mu Na+ and delta mu H+ were both able to drive the synthesis of ATP in the vesicular system. ATP synthesis driven by heterodisulfide reduction (delta mu H+) or an artificial delta pH was inhibited by the protonophore SF6847 but not by the sodium ionophore ETH157, whereas ETH157 but not SF6847 inhibited ATP synthesis driven by a chemical sodium ion gradient (delta pNa) as well as the methyl transfer reaction (delta mu Na+). Inhibition of the Na+/H+ antiporter led to a stimulation of ATP synthesis driven by the methyl transfer reaction (delta mu Na+), as well as by delta pNa. These experiments indicate that delta mu Na+ and delta mu H+ drive the synthesis of ATP via an Na(+)- and an H(+)-translocating ATP synthase, respectively. Inhibitor studies were performed to elucidate the nature of the ATP synthase(s) involved. delta pH-driven ATP synthesis was specifically inhibited by bafilomycin A1, whereas delta pNa-driven ATP synthesis was exclusively inhibited by 7-chloro-4-nitro-2-oxa-1,3-diazole, azide, and venturicidin. These results are evidence for the presence of an F(1)F(0)-ATP synthase in addition to the A(1)A(0)-ATP synthase in membranes of M. Mazei Gö1 and suggest that the F(1)F(0)-type enzyme is an Na+-translocating ATP synthase, whereas the A(1)A(0)-ATP synthase uses H+ as the coupling ion.  相似文献   

16.
The effect of inhibitors of proton pumps, of uncouplers and of permeant ions on the relationship between input force, delta mu H+, and output flows of the ATPase, redox and transhydrogenase H(+)-pumps in submitochondrial particles was investigated. It is concluded that: (1) The decrease of output flow of the transhydrogenase proton pump, defined as the rate of reduction of NADP+ by NADH, is linearily correlated with the decrease of input force, delta mu H+, in an extended range of delta mu H+, independently of whether the H(+)-generating pump is the ATPase or a redox pump, or whether delta mu H+ is depressed by inhibitors of the H(+)-generating pump such as oligomycin or malonate, or by uncouplers. (2) The output flows of the ATPase and of the site I redox H(+)-pumps exhibit a steep dependence on delta mu H+. The flow-force relationships differ depending on whether the depression of delta mu H+ is induced by inhibitors of the H(+)-generating pump, by uncouplers or by lipophilic anions. (3) With the ATPase as H(+)-consuming pump, at equivalent delta mu H+ values, the output flow is more markedly inhibited by malonate than by uncouplers; the latter, however, are more inhibitory than lipophilic anions such as ClO4-. With redox site I as proton-consuming pump, at equivalent delta mu H+ values, the output flow is more markedly inhibited by oligomycin than by uncouplers; again, uncouplers are more inhibitory than ClO4-. (4) The results provide further support for a delocalized interaction of transhydrogenase with other H(+)-pumps.  相似文献   

17.
The regulation of the membrane-bound H(+)-ATPase from the photosynthetic bacterium Rhodobacter capsulatus was investigated. In the presence of uncouplers the rate of ATP hydrolysis was about 40 mM ATP/M bacteriochlorophyll (Bchl)/s. Without uncouplers this rate increased and if, additionally, the chromatophores were illuminated, it was almost doubled. If uncouplers were added shortly after illumination, the rate increased to 300-350 mM ATP/M Bchl/s. Obviously, energization of the membrane leads to the formation of a metastable, active state of the H(+)-ATPase. The maximal rate of ATP hydrolysis can be measured only when first all H(+)-ATPases are activated by delta mu H+ and when the delta mu H+ is abolished in order to release its back pressure on the hydrolysis rate. The half-life time of the metastable state in the absence of delta mu H+ is about 30 s. It is increased by 3 mM Pi to about 80 s and it is decreased by 1 mM ADP to about 15 s. Quantitatively, the fraction of active H(+)-ATPases shows a sigmoidal dependence on pHin (at constant pHout) and the magnitude of delta psi determines the maximal fraction of enzymes which can be activated: delta pH and delta psi are not equivalent for the activation process.  相似文献   

18.
Combinations of low concentrations of carbonyl cyanide p-trifluoromethoxyphenylhy-drazone (FCCP) with suboptimal concentrations of Dio-9, phloridzin, ajmaline, and dihydrodiscarine B synergistically inhibited cyclic and noncyclic photophosphorylation in spinach chloroplasts but their effects on the light-triggered ATPase were additive rather than synergistic. The effect was reversed by washing and prevented by dithioerythritol and by cistein. Carbonyl cyanide m-chlorophenylhydrazone (CCP) could replace FCCP but uncouplers of other types like atebrin did not substitute for FCCP.Combinations of FCCP with the four inhibitors synergistically uncoupled ferricyanide reduction in the presence of ADP and Pi but not in their absence. The synergistic uncoupling was not observed on the light-dependent pH rise of chloroplast suspensions.Association of FCCP with any of the inhibitors completely abolished the stimulation of proton uptake or the inhibition of electron transport induced by low concentrations of ATP.This synergistic and peculiar uncoupling can not be ascribed to a modification of membrane permeability. One possible explanation is that the effect requires a conformational state of the membrane-bound coupling factor 1 (CF1) induced by phosphorylating conditions which would facilitate the interaction of inhibitors and FCCP with the membrane.  相似文献   

19.
Free fatty acids (FFA) are known to uncouple oxidative phosphorylation in mitochondria. However, their mechanism of action has not been elucidated as yet. In this study we have investigated in detail the patterns of uncoupling by the FFA oleate and palmitate in rat liver mitochondria and submitochondrial particles. The patterns of uncoupling by FFA were compared to uncoupling induced by the ionophores valinomycin (in the presence of K+) and gramicidin (in the presence of Na+) and the proton translocator carbonyl cyanide m-chlorophenylhydrazone (CCCP). The most striking difference in the pattern of uncoupling relates to the effect on the proton electrochemical potential gradient, delta mu H. Uncoupling by ionophores, particularly valinomycin, is associated with and most likely caused by a major reduction of delta mu H. In contrast, uncoupling by FFA is not associated with a significant reduction of delta mu H, indicating another mechanism of uncoupling. We suggest the use of the term decouplers for uncoupling agents such as FFA and general anesthetics that do not collapse the delta mu H [Rottenberg, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317]. The protonophore CCCP and to some extent the ionophore gramicidin indicate a mixed mode of uncoupling since their effect on delta mu H is moderate when compared to that of valinomycin. Another distinguishing feature of uncouplers that collapse the delta mu H is their ability to stimulate ADP-stimulated respiration (state 3) further. Decouplers such as FFA and general anesthetics do not stimulate state 3 respiration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
T A Scholes  P C Hinkle 《Biochemistry》1984,23(14):3341-3345
The maximum Gibbs free energies of reverse electron transfer from succinate to NAD+ and from cytochrome c to fumarate driven by ATP hydrolysis in submitochondrial particles from beef heart were measured as a function of the Gibbs free energy of ATP hydrolysis. The ratio of the energies delta G'redox/delta G'ATP was 1.40 from succinate to NAD+ and 0.89 from cytochrome c to succinate. The ratio, equivalent to a thermodynamic P/2e-ratio, was dependent on whether the electrochemical proton gradient was primarily a membrane potential or a pH gradient for the cytochrome c to fumarate reaction. The results are consistent with H+/ATP = 3 for F1 ATPase, H+/2e- = 4 for NADH-CoQ reductase, and H+(matrix)/2e- = 2 for succinate-cytochrome c reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号