首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Nitellopsis cells grown in fresh water have a relatively low cytoplasmic Na+ (11 mol m−3) and high cytoplasmic K+ (90 mol m−3) content. A 30-min treatment with 100 mol m−3 external NaCl resulted in a high [Na+]c (90 mol m−3) and a low [K+]c (33 mol m−3), Subsequent addition of external Ca2+ (10 mol m−3) prevented Na+ influx and then [Na+]c decreased slowly. Changes in [K+]c were opposite to [Na+]c. During the recovery time vacuolar Na+ increased, while vacuolar K+ decreased. Since all these processes proceeded also under ice-cold conditions, the restoration of original cytoplasmic ion compositions is suggested to be a passive nature. The notion that the passive movement of ions across the tonoplast can act as an effective and economic mechanism of salt tolerance under transient or under mild salt stress conditions is discussed.  相似文献   

2.
Oscillatory changes of the electrical resistance across the nodal complex of Nitellopsis obtusa (Desv. in Lois) J. Gr. were observed in experiments performed for 40–150 min with the use of external electrodes and microelectrodes. Three main patterns of node resistance oscillations were similar to those found for membrane potential and resistance. The presented findings indicate an oscillatory behaviour of the plasmodesmata system at the node, which may be connected with e.g. pulsatile variations in the number of open plasmodesmata.  相似文献   

3.
Isolated characean internodal cells of Nitellopsis obtusa can be stored in artificial pond water for many days, but they cannot survive in 100mol m?3 NaCl solution unless more than several mol m?3 Ca2+ is added. Short-term effects of NaCl stress on the cytosolic concentration of Ca2+ ([Ca2+]c), cytosolic pH (pHc) and vacuolar pH (pHv) were studied in relation to the external concentration of Ca2+ ([Ca2+]e). Changes in [Ca2+]c were measured with light emission from a Ca2+-sensitive photoprotein, semisynthetic fch-aequorin which had been injected into the cytosol. Both pHc and pHv were measured with double-barrelled pH-sensitive microelectrodes. When internodal cells were treated with 100 mol m?3 NaCl (0–1 mol m?3 NaCl (0.1 mol m?3 [Ca2+]e), [Ca2+]c increased and then recovered to the original level within 60 min. The time course of the transient change in [Ca2+]c was not influenced by the level of [Ca2+]c (0.1 and 10 mol m?3). In some cases, the transient increase in [Ca2+]c was induced only by increasing external osmotic pressure with sorbitol. In response to treatment with 100 mol m?3 NaCl (0.1 mol m?3 [Ca2+]c), pHc decreased by 0.1–0.2 units after 10min but recovered after 30–60 min, while pHv increased by 0.4–0.5 units after 2–50 min and tended to recover after 60 min. The initial changes in both pHc and pHv were suppressed when [Ca2+]e was raised from 0.1 to 10mol m?3. These results show that the charophyte alga Nitellopsis can regulate [Ca2+]c, pHc and pHv under NaCl stress in the short term and that the protective effect of Ca2+ on salinity stress is apparently unrelated to perturbation of Ca2+ and pH homeostasis.  相似文献   

4.
Nitellopsis obtusa (Charales, Charophyceae) are widely distributed from Europe to Asia; however, this species has been recorded in only the five lakes in central Honshu in Japan. This species was thought to be extinct in Japan, but was rediscovered in limited areas of Lake Kawaguchi in central Honshu. More recently, we discovered more Japanese populations of N. obtusa in Lake Biwa in western Honshu, and it became clear that the species had a broader distribution in Japan than originally believed. In addition, although only male or female thalli have been collected at each lake, both male and female thalli were found from Lake Biwa. This is the first report of a potentially sexual population of N. obtusa in Japan. The DNA sequences of three chloroplast DNA markers, including both coding and non‐coding regions, were identical in all specimens from Lake Kawaguchi and Lake Nojiri (Central Honshu), and differed from those of Lake Biwa and German specimens. Although Japanese and German specimens were genetically similar, Japanese specimens displayed considerable genetic diversity according to locality.  相似文献   

5.
Effects of amphiphilic derivatives of glycine esters of the general formula (CH3)3N+CH2COOCnH2n+1Cl- (n = 10, 12, 14, 16) on membrane potential and conductance in internodal cells of the alga Nitellopsis obtusa were studied. The compounds decreased the potential difference between vacuole and external medium and increased the electric conductance. The effects depended on the length of the alkyl chain (n) and the concentration of these quaternary ammonium salts. Light-induced hyperpolarization was suppressed by the salts. We suggest that the ammonium salts inhibit the electrogenic proton pump in the plasmalemma and enhance the passive efflux of Cl- from the algal cell.  相似文献   

6.
生物炭调控盐胁迫下水稻幼苗耐盐性能   总被引:1,自引:0,他引:1  
土壤盐渍化降低土壤生产力.探索生物炭对盐胁迫下水稻幼苗耐盐性能的影响,对调控盐渍区水稻生产潜力具有重要意义.本研究通过生物炭介入盐胁迫稻田土壤的盆栽试验,调查了生物炭对盐胁迫下土壤环境和水稻幼苗耐盐性能的影响.盐胁迫设置4个水平,分别为0 g NaCl·kg-1土(S0),1 g NaCl·kg-1土(S1),2 g ...  相似文献   

7.
小麦耐盐细胞系耐盐性分析   总被引:9,自引:0,他引:9  
通过一步筛选获得了耐盐(1.0%,NaCl)的小麦(Triticum aestivum)细胞系(Sr1),当SR1在含1.0%,NaCl的培养基上继代半年后,钭其中的一部分移入无盐培养基代10次,得到细胞系SR2。无论是在正常还是办迫条件下,SR1的鲜重增量/克鲜重、脯氨酸及可溶性蛋白含量均高于原始型(SN),而含水量均高于原始型(SN),而含水量、K^+及可溶性糖含量却低于SN。Na^+和Cl^  相似文献   

8.
The relationship between adenine-nucleotide levels and metabolism-dependent membrane potential was studied in cells of Nitellopsis obtusa. Effects of ADP and AMP in the presence of ATP on electrogenic pump activity were measured in the dark, using the continuous perfusion method. Both ADP and AMP acte as competitive inhibitors for ATP, the Ki value for either compound being about 0.4 mM. The role of ADP and AMP as regulating factors for the electrogenic pump was investigated under various metabolic conditions. Application of N2 gas in the dark caused a significant membrane depolarization amounting to 90 mV, but cytoplasmic streaming and membrane excitability were not affected. Under anoxia, the ATP level decreased from 1.6 to 0.5 mM; ADP increased but only slightly, and AMP increased greatly. However, the time course of changes in the adenine nucleotides was not concurrent with that of the membrane-potential changes, thus, the adenine-nucleotide level changes cannot fully account for the N2-elicited depolarization. Under light, although the membrane hyperpolarized, no significant changes in the adenine-nucleotide levels were observed. Therefore, the light-induced membrane hyperpolarization cannot be explained solely by changes in adenine-nucleotide levels.Abbreviations APW artificial pond water - Em membrane potential - Rm membrane resistance  相似文献   

9.
Plant salt tolerance: adaptations in halophytes   总被引:1,自引:0,他引:1  
Background Most of the water on Earth is seawater, each kilogram of which contains about 35 g of salts, and yet most plants cannot grow in this solution; less than 0·2 % of species can develop and reproduce with repeated exposure to seawater. These ‘extremophiles’ are called halophytes.Scope Improved knowledge of halophytes is of importance to understanding our natural world and to enable the use of some of these fascinating plants in land re-vegetation, as forages for livestock, and to develop salt-tolerant crops. In this Preface to a Special Issue on halophytes and saline adaptations, the evolution of salt tolerance in halophytes, their life-history traits and progress in understanding the molecular, biochemical and physiological mechanisms contributing to salt tolerance are summarized. In particular, cellular processes that underpin the ability of halophytes to tolerate high tissue concentrations of Na+ and Cl, including regulation of membrane transport, their ability to synthesize compatible solutes and to deal with reactive oxygen species, are highlighted. Interacting stress factors in addition to salinity, such as heavy metals and flooding, are also topics gaining increased attention in the search to understand the biology of halophytes.Conclusions Halophytes will play increasingly important roles as models for understanding plant salt tolerance, as genetic resources contributing towards the goal of improvement of salt tolerance in some crops, for re-vegetation of saline lands, and as ‘niche crops’ in their own right for landscapes with saline soils.  相似文献   

10.
Calcineurin is a Ca2+- and calmodulin-dependent serine/threonine phosphatase and has multiple functions in animal cells including regulating ionic homeostasis. We generated transgenic rice plants that not only expressed a truncated form of the catalytic subunit of mouse calcineurin, but also were able to grow and fertilize normally in the field. Notably, the expression of the mouse calcineurin gene in rice resulted in its higher salt stress tolerance than the non-transgenic rice. Physiological studies have indicated that the root growth of transgenic plants was less inhibited than the shoot growth, and that less Na+ was accumulated in the roots of transgenic plants after a prolonged period of salt stress. These findings imply that the heterologous calcineurin plays a significant role in maintaining ionic homeostasis and the integrity of plant roots when exposed to salt. In addition, the calcineurin gene expression in the stems of transgenic plants correlated with the increased expression of the Rab16A gene that encodes a group 2-type late-embryogenesis-abundant (LEA) protein. Altogether our findings provide the first genetic and physiological evidence that expression of the mouse calcineurin protein functionally improves the salt stress tolerance of rice partly by limiting Na+ accumulation in the roots.  相似文献   

11.
不同耐盐品种棉花根系主要指标对盐分胁迫的响应   总被引:5,自引:0,他引:5  
以盐敏感品种‘中棉所45’(CCRI45)、弱耐盐品种‘新陆早17号’(XLZ17)、中等耐盐品种‘新陆早13号’(XLZ13)和耐盐品种‘中棉所35’(CCRI35)为试验材料,利用根系分析系统研究盐分胁迫下棉花根系形态特征及其与棉株耐盐性的关系.结果表明:盐分胁迫显著降低棉花根和叶的干质量以及K^+/Na^+,其中耐盐品种CCRI35和中等耐盐品种XLZ13的根干质量、叶干质量以及根中K^+/Na^+分别比盐敏感品种CCRI45提高了69.3%~104.4%、24.8%~45.3%和25.0%~45.8%;盐分胁迫显著抑制棉花根系生长发育,其中CCRI 35和XLZ13的总根长、根系总表面积、根系总体积以及0~10 cm土层中直径为0~1.2 mm内的根长、根表面积和根体积均显著高于CCRI45,分别增加了15.2%~85.8%、12.0%~68.5%、31.7%~217.8%、27.2%~73.9%、39.6%~74.3%和99.0%~309.7%.主成分分析表明,比根长、浅层根长比例和细根比例受基因型差异的影响较为明显,是区分不同耐盐品种棉花根系形态差异的主要指标.逐步回归分析显示,比根长、0~10 cm土层的粗根根长、细根根表面积、粗根根表面积、粗根体积、中根比例,以及10~20 cm粗根根长、粗根表面积、粗根体积等根系参数对盐分响应敏感.耐盐棉花品种可通过维持表层根长比例、细根比例和比根长的增加来适应盐分胁迫.  相似文献   

12.
Although recent studies have suggested that the microfilament (MF) cytoskeleton of plant cells participates in the response to salt stress, it remains unclear as to whether the MF cytoskeleton actually plays an active role in a plant's ability to withstand salt stress. In the present study, we report for the first time the role of MFs in salt tolerance of Arabidopsis thaliana . Our experiments revealed that Arabidopsis seedlings treated with 150 m m NaCl maintained MF assembly and bundle formation, whereas treatment with 250 m m NaCl initially induced MF assembly but subsequently caused MF disassembly. A corresponding change in the fluorescence intensity of MFs was also observed; that is, a sustained rise in fluorescence intensity in seedlings exposed to 150 m m NaCl and an initial rise and subsequent fall in seedlings exposed to 250 m m NaCl. These results suggest that MF assembly and bundles are induced early after salt stress treatment, while MF polymerization disappears after high salt stress. Facilitation of MF assembly with phalloidin rescued wild-type seedlings from death, whereas blocking MFs assembly with latrunculin A and cytochalasin D resulted in few survivors under salt stress. Pre-treatment of seedlings with phalloidin also clearly increased plant ability to withstand salt stress. MF assembly increased survival of Arabidopsis salt-sensitive sos2 mutants under salt stress and rescued defective sos2 mutants. Polymerization of MFs and its role in promoting survival was also found in plants exposed to osmotic stress. These findings suggest that the MF cytoskeleton participates and plays a vital role in responses to salt and osmotic stress in Arabidopsis .  相似文献   

13.
DNA cassette containing an AtDREB1A cDNA and a nos terminator,driven by a cauli- flower mosaic 35S promoter,or a stress-inducible rd29A promoter,was transformed into the ground cover chrysanthemum(Dendranthema grandiflorum)'Fall Color'genome.Compared with wild type plants,severe growth retardation was observed in 35S:DREB1A plants,but not in rd29A:DREB1A plants.RT-PCR analysis revealed that,under stress conditions,the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants,but was over-expressed inductively in rd29A:DREB1A plants.The transgenic plants exhibited tolerance to drought and salt stress,and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants.Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions.These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum,and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

14.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

15.
盐胁迫对4树种叶片中K^+和Na^+的影响及其耐盐能力的评价   总被引:39,自引:0,他引:39  
通过盆栽试验,对我国南方银杏(Ginkgo biloba L.)、侧柏[Patycladus orentalis(L.)Franco]、火炬松(Pinus taeda L.)和剌槐(Robinia Pseudoacacia L.)4造林树种苗木叶片中K^ 、N^ 浓度浓度和N^ /K^ 比进行测定,盐处理水平为0.0%(CK)、0.1%、0.3%和0.5%。随着盐浓度的提高,各树种叶片中Na^ 浓度和N^ /K^ 有逐渐升高的趋势,但K^ 浓度变化较小;随着盐胁迫时间的推移,各树种叶片中Na^ 、K^ 浓度和Na^ /K^ 比都没有明显的变化规律。方差分析和多层比较表明,侧柏、火炬松和剌槐叶片中Na^ 、K^ 浓度和N^ /K^ 比在4组处理间的差异均达显著或极显著水平。4树种中剌槐和侧柏的耐盐能力最强,银杏次之,火炬松最弱。  相似文献   

16.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

17.
18.
盐胁迫下树种幼苗生长及其耐盐性   总被引:16,自引:1,他引:16  
张华新  刘正祥  刘秋芳 《生态学报》2009,29(5):2263-2271
采用盆栽方法,以11个树种实生幼苗为材料,用不同浓度(0、3、5、8 g·kg-1和10 g·kg-1)NaCl溶液进行1次性浇灌处理,对盐胁迫下各树种的形态表现、生长及耐盐性进行了研究,结果表明:(1)当盐含量达到8 g·kg-1时,欧洲荚蒾、甜桦和光叶漆植株死亡,当含量增加到10 g·kg-1时,沃氏金链花植株死亡,其它各存活树种也均出现不同程度的盐害症状;(2)盐胁迫后,各树种的苗高生长量下降、生物量累积减少,且随着处理浓度的增加均呈下降趋势,其中榆桔、甜桦和光叶漆的降幅最大;(3)盐处理后,各树种的根冠比值增大,其中盐胁迫对光叶漆、银水牛果和沃氏金链花有显著影响(p<0.05);(4)综合分析各树种的生长和形态表现,认为日本丁香、银水牛果、三裂叶漆和豆梨具有高度耐盐性,沃氏金链花、金雀儿、鹰爪豆和榆桔具有中高度耐盐性,而欧洲荚蒾、甜桦和光叶漆具有中度耐盐性.  相似文献   

19.
The effect of prolonged illumination (60 min) with photosynthetically active monochromatic radiation of low intensity (3 μmol m−2 s−1) and high intensity (60 μmol m−2 s−1), corresponding to the physiological conditions and light stress conditions, respectively, was studied in the algae Nitellopsis obtusa. Illumination of Nitellopsis obtusa cells with strong light was associated with activation of the xanthophyll cycle, manifested by the deepoxidation of violaxanthin and accumulation of antheraxanthin and zeaxanthin. At the same time, the efficient singlet excitation quenching in the photosynthetic apparatus was activated, as demonstrated by the decrease in the intensity of the chlorophyll a fluorescence emission by ca 50 %. The difference of the fluorescence excitation spectra recorded before and after the light treatment match the difference absorption spectrum of the xanthophyll cycle pigments. The illumination with low light intensity resulted also in the chlorophyll a fluorescence quenching but the effect was very small (less than 10 %). The fluorescence quenching is interpreted in terms of the energy transfer between the Qy energy level of chlorophyll a and the 21 Ag energy level of zeaxanthin. The singlet energy levels of carotenoids, corresponding to the green spectral region, are also taken into consideration in the interpretation of the excitation energy exchange between the carotenoids and chlorophylls. Possible molecular mechanisms involved in the activation of the strong and the weak excitation quenching, including violaxanthin isomerization, and possible physiological functions of such pathways of energy transfer are discussed.  相似文献   

20.
AtHKT1 is a sodium (Na+) transporter that functions in mediating tolerance to salt stress. To investigate the membrane targeting of AtHKT1 and its expression at the translational level, antibodies were generated against peptides corresponding to the first pore of AtHKT1. Immunoelectron microscopy studies using anti-AtHKT1 antibodies demonstrate that AtHKT1 is targeted to the plasma membrane in xylem parenchyma cells in leaves. AtHKT1 expression in xylem parenchyma cells was also confirmed by AtHKT1 promoter-GUS reporter gene analyses. Interestingly, AtHKT1 disruption alleles caused large increases in the Na+ content of the xylem sap and conversely reduced the Na+ content of the phloem sap. The athkt1 mutant alleles had a smaller and inverse influence on the potassium (K+) content compared with the Na+ content of the xylem, suggesting that K+ transport may be indirectly affected. The expression of AtHKT1 was modulated not only by the concentrations of Na+ and K+ but also by the osmolality of non-ionic compounds. These findings show that AtHKT1 selectively unloads sodium directly from xylem vessels to xylem parenchyma cells. AtHKT1 mediates osmolality balance between xylem vessels and xylem parenchyma cells under saline conditions. Thus AtHKT1 reduces the sodium content in xylem vessels and leaves, thereby playing a central role in protecting plant leaves from salinity stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号