首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Kinetic properties of xanthine:NAD+ oxidoreductase from liver of two uricotelic species of vertebrates (hen Gallus gallus and snake Natrix natrix) are compared. 2. Hen enzyme is saturated by hypoxanthine and xanthine at higher concentrations than the snake enzyme. For both species the enzyme-saturating concentration and hydroxylation rate of hypoxanthine are higher than those of xanthine, and the rate of uric acid production in the hypoxanthine----xanthine----uric acid reaction sequence is independent of the initial hypoxanthine concentration. 3. Km's for xanthine are the same, but Km for NAD+ of the hen enzyme is approximately 5-fold lower. The enzyme from both species is inhibited by NADH only slightly and at high non-physiological concentrations.  相似文献   

2.
Soybean nodule xanthine dehydrogenase: a kinetic study   总被引:1,自引:0,他引:1  
Xanthine dehydrogenase was purified from soybean nodules and the kinetic properties were studied at pH 7.5. Km values of 5.0 +/- 0.6 and 12.5 +/- 2.5 microM were obtained for xanthine and NAD+, respectively. The pattern of substrate dependence suggested a Ping-Pong mechanism. Reaction with hypoxanthine gave Km's of 52 +/- 3 and 20 +/- 2.5 microM for hypoxanthine and NAD+, respectively. The Vmax for this reaction was twice that for the xanthine-dependent reaction. The pH dependence of Vmax gave a pKa of 7.6 +/- 0.1 for either xanthine or hypoxanthine oxidation. In addition the Km for xanthine had a pKa of 7.5 consistent with the protonated form of xanthine being the true substrate. Km for hypoxanthine varied only 2.5-fold between pH 6 and 10.7. Product inhibition studies were carried out with urate and NADH. Both products gave mixed inhibition with respect to both substrates. Xanthine dehydrogenase was able to use APAD+ as an electron acceptor for xanthine oxidation, with a Km at pH 7.5 of 21.2 +/- 2.5 microM and Vmax the same as that obtained with NAD+. Reduction of APAD+ by NADH was also catalyzed by xanthine dehydrogenase with a Km of 102 +/- 15 microM; Vmax was approximately 2.5 times that for the xanthine-dependent reaction, and was independent of pH between 6 and 9. Reaction with group-specific reagents indicated the possibility of an essential histidyl group. A thiol-modifying reagent did not cause inactivation of the enzyme. A role for the histidyl side chain in catalysis is proposed.  相似文献   

3.
The enzyme hydroxylating oxypurines in the liver of grass snake (Natrix natrix, Colubridae) was found to be a stable xanthine:NAD+ oxidoreductase (EC 1.2.1.37). The Michaelis constants for NAD+ and xanthine amounted to 14.4 and 12.3 microM, respectively. The enzyme affinity to hypoxanthine is lower than that to xanthine, but the former substrate is hydroxylated faster than the latter. The enzyme is only slowly and slightly (up to 22%) inhibited by NADH accumulating during xanthine hydroxylation. The above data and the time-course of hypoxanthine----xanthine----uric acid hydroxylation indicated that the kinetic properties of the snake liver enzyme provide in this uricotelic animal fast elimination of superfluous nitrogen derived from protein catabolism.  相似文献   

4.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

5.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Mitochondria from the muscle of Ascaris lumbricoides var. suis function anaerobically. NADH is generated in the intermembrane space as a consequence of the "malic" enzyme reaction. It has been suggested that this reducing equivalent in the form of hydride ion, would be translocated across the inner membrane in order to mediate ATP generation via the fumarate reductase reaction. In accord with this suggestion, intact Ascaris mitochondria showed appreciable NADH oxidase activity. Sonication resulted in an approximately 2-fold increase in NADH oxidase activity, whereas "malic" enzyme, fumarase, and NADH:NAD+ transhydrogenase activities increased approximately 7- to 14-fold, respectively. Phosphorylation capabilities and permeability toward pyridine nucleotides also indicated the intactness of the mitochondria. Ascaris mitochondria incubated anaerobically in the presence of fumarate, and [14C]NADH catalyzed a rapid reduction of the fumarate to succinate with the concomitant formation of equivalent quantities of extramitochondrial NAD+. However, very little isotope was recovered from the washed mitochondria, indicating the possibility of hydride ion translocation in the absence of nucleotide translocation. NADH:NAD+ transhydrogenase has been isolated from the muscle mitochondria of the intestinal nematode, Ascaris lumbricoides var. suis. The enzyme seems to have been solubilized from the mitochondrial membrane fraction by treatment with sodium deoxycholate followed by dialysis and subsequent adsorption by and elution from alumina C gamma. No NADPH:NAD+ transhydrogenase activity was detectable, making the Ascaris system unique over others reported. Activity was protected by L-cysteine, reduced glutathione and dithioerythritol, but strongly inhibited by low concentrations of p-chloromercuribenzoate or silver nitrate. The thionicotinamide derivative of NAD+ (thioNAD+) was employed to accept hydride ions from NADH in order to assay spectrophotometrically at 398 nm. Apparent Km values for thioNAD+ and NADH were 1 X 10(-4) M and 8 X 10(-6) M, respectively. That the physiological nucleotide, could act as hydride ion acceptor from NADH was indicated by the findings that NAD+ competitively inhibited the reduction of thioNAD+ when assayed at 398 nm. The additional finding of a noncompetitive inhibition between NAD+ and NADH suggested at least two binding sites on the enzyme, one for NADH and another common site for NAD+ and thioNAD+. More conclusive evidence indicating the participation of NAD+ as acceptor was obtained by incubation of the enzyme with NADH and [14C]NAD+ and demonstrating a rapid formation of [14C]NADH. These findings, in conjunction with those discussed above, suggest a physiological function of this enzyme in hydride ion translocation.  相似文献   

7.
Purification and characterization of mitochondrial malate dehydrogenase [EC 1.1.1.37] from unfertilized eggs of the sea urchin, Anthocidaris crassispina, are described. The purification method consisted of dextran sulfate fractionation, Blue Dextran Sepharose chromatography, Phenyl-Sepharose hydrophobic chromatography and DEAE-cellulose chromatography. The enzyme was purified 771-fold with a 7% yield from the crude extract. The purified enzyme appeared homogeneous on polyacrylamide gel electrophoresis under both native and denatured conditions. After incubation at 45 degrees C for 50 min, the enzyme lost about 90% of its activity. In the presence of NADH, however, the enzyme was protected against the heat denaturation. The native enzyme had a molecular weight of about 65,000 and probably consisted of two identical subunits. In the reduction of oxaloacetate with NADH, a broad optimum pH ranging from 8.2 to 9.4 was found with 50 mM Tris-HCl and glycine-NaOH buffers. Sodium phosphate buffer apparently activated the enzyme. The apparent Km values for oxaloacetate and NADH were 19 microM and 30 microM, respectively. The optimum pH for malate oxidation with NAD+ was 10.2 in 50 mM NaHCO3-Na2CO3 buffer. The apparent Km values for malate and NAD+ were 7.0 mM and 0.6 mM, respectively. Zinc ion, sulfite ion, p-chloromercuriphenylsulfonate and adenine nucleotides strongly inhibited the enzyme.  相似文献   

8.
1. Mitochondrial aldehyde dehydrogenase is purified to near homogeneity by hydroxylapatite-, affinity- and hydrophobic interaction-chromatography. 2. The enzyme is an oligomeric protein and its molecular weight, as determined by gel-filtration, is 117,000 +/- 5000. 3. Active only in the presence of exogenous sulfhydryl compounds and NAD(+)-dependent, aldehyde dehydrogenase works optimally with linear-chain aliphatic aldehydes and is practically inactive with benzaldehyde. The pH-optimum is at about pH 8.5. 4. Km-Values for aliphatic aldehydes (C2-C6) range between 0.17 and 0.32 microM. The Km for NAD+ increases from 16 microM with acetaldehyde to 71 microM with capronaldehyde. 5. Millimolar concentrations of Mg2+ promote high increases of both V and Km for NAD+. At the same time, saturation curves with C4-C6 aldehydes can be simulated with a substrate inhibition model. 6. Inhibition by NADH is competitive: with capronaldehyde, the inhibition constant for NADH is 52 microM in the absence of Mg2+ and 14 microM in the presence of 4 mM Mg2+; with acetaldehyde, the inhibition constant is about three times higher (36 and 159 microM, respectively).  相似文献   

9.
A novel aerobic mechanism of 2-aminobenzoate metabolism was proposed in a denitrifying Pseudomonas species. 2-Aminobenzoic acid is activated in a coenzyme-A-ligase reaction to 2-aminobenzoyl-CoA and this intermediate is dearomatized by a unique enzyme, tentatively named 2-aminobenzoyl-CoA monooxygenase/reductase. This paper describes the purification and some molecular, kinetic and spectral properties of this flavoenzyme which catalyzes the hydroxylation and reduction of 2-aminobenzoyl-CoA to an unknown non-aromatic compound. 2-Aminobenzoyl-CoA monooxygenase/reductase was purified 25-fold to a specific activity of 25 mumol.min-1.mg-1 protein using ammonium sulfate precipitation, DEAE-cellulose anion-exchange, hydroxylapatite and Mono Q FPLC anion-exchange chromatography. Superose 6 gel filtration for estimation of molecular mass resulted in one symmetrical protein peak corresponding to a molecular mass of 170 kDa. Several experimental data suggest that the protein is probably an alpha 2 dimer; however, it may exist in three dimeric forms, alpha alpha, alpha alpha' and alpha' alpha', where alpha' may be a subunit with a different conformation. Approximately 2 mol noncovalently bound FAD/mol enzyme was found, which in the absence of O2 was reduced by NADH. The enzyme was specific for the substrates 2-aminobenzoyl-CoA (Km less than or equal to 25 microM) and O2 (Km less than or equal to 5 microM), but less specific for the reduced pyridine nucleotides NADH (Km = 42 microM) or NADPH [Km = 500 microM; Vmax (NADH)/Vmax (NADPH) = 1.7:1]. The turnover number was 4250 min-1. The enzyme also reduced N-ethylmaleimide and maleimide with NAD(P)H. The substrate, the products and the reaction stoichiometry are described in two following papers.  相似文献   

10.
The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway.  相似文献   

11.
Present evidence suggests that skin is an important organ of prostaglandin metabolism. To clarify its role, the basic kinetics of 15-hydroxyprostaglandin dehydrogenase (PGDH) from rat skin were investigated with either NAD+ of NADP+ as co-substrate. Prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E2 (PGE2) were used as substrates and preliminary studies were made of the inhibitory effects of the reduced co-substrates NADH and NADPH. A radiochemical assay was used in which [3H]PGF2 alpha or [14C]PGE2 were incubated with high-speed supernatant of rat skin homogenates. The substrate and products were then extracted by solvent partition, separated by t.l.c. and quantified by liquid-scintillation counting. At linear reaction rates and at an NAD+ concentration of 10 mM the mean apparent Km for PGF2 alpha was 24 microM with a mean apparent Vmax. of 9.8 nmol/s per litre of reaction mixture. For PGE2 the mean apparent Km was 8 microM, with a mean apparent Vmax, of 2.7 nmol/s per litre of reaction mixture. With NADP+ as a co-substrate at a concentration of 5 mM a mean apparent Km of 23 microM was obtained for PGF2 alpha with a mean apparent Vmax. of 5.2 nmol/s per litre. For PGE2 values of 7.5 microM and 3.0 nmol/s per litre were obtained respectively. These results show that skin contains NAD+- and NADP+-dependent PGDH. An important finding was that the NADP+-linked enzyme gave Km values for PGE2 that were considerably lower than those reported for NADP+-linked PGDH from other tissues. Furthermore, preliminary inhibition studies with the NAD+-linked PGDH system indicate that this enzyme is not only inhibited by NADH, but also by NADPH, a property not previously reported for NAD+-linked PGDH derived from other tissues.  相似文献   

12.
Calmodulin-dependent NAD kinase of human neutrophils   总被引:1,自引:0,他引:1  
NAD kinase from human neutrophils has been partially purified by sequential application of Red Agarose, ion-exchange, and gel-filtration chromatography. The enzyme has a broad pH optimum, 7.0-9.5, is strictly dependent upon the presence of Mg2+, and in the absence of calcium exhibits Km values of 0.6 and 0.9 mM for NAD and ATP, respectively. NAD kinase activity is extremely sensitive to free calcium concentration, with half-maximal activity observed at free calcium concentrations of approximately 0.4 microM. In cellular extracts calcium-dependent activation of NAD kinase increases the maximum velocity of the reaction from 2- to 5-fold while not affecting Km values for NAD and ATP. The activity of the partially purified NAD kinase is stimulated 3.5-fold by the addition of calmodulin in the presence of calcium. This stimulation is inhibited by the addition of 20 microM trifluoperazine to the incubation. These data are interpreted as implicating calmodulin in NAD kinase regulation. The total concentration of NADP + NADPH in the human neutrophil used increased 2.2-fold in response to activation by phorbol myristic acetate. Finally, neutrophil NAD kinase has a Mr, based upon gel filtration, of 169,000.  相似文献   

13.
J L Gabriel  G W Plaut 《Biochemistry》1984,23(12):2773-2778
The activity of NAD-dependent isocitrate dehydrogenase from bovine heart was inhibited by NADH (apparent Ki about 4.3 microM) and NADPH (Ki about 9.8 microM) at subsaturating substrate concentrations at pH 7.4. The inhibition by NADH or NADPH was reversed competitively by magnesium isocitrate in the presence of ADP, but not without ADP. Reversal of inhibition by NADH or NADPH with respect to NAD+ was competitive or of the linear mixed type depending on whether ADP was absent or present. ADP3- (0.2 mM) increased the Ki(app) for NADPH from 9.8 to 27.1 microM; further addition of Ca2+ (0.2 mM) raised the Ki(app) to 127 microM. For the modification of NADPH inhibition by ADP, S0.5 for Ca2+ was approximately 48 microM. This compares to the Km for Ca2+ of 0.3-1 microM for the activation of the enzyme without NADPH [Denton, R. M., Richards, D. A., & Chin, J. G. (1978) Biochem. J. 176, 899-906; Aogaichi, T., Evans, J., Gabriel, J., & Plaut, G. W. E. (1980) Arch. Biochem. Biophys. 204, 350-360]. ADP did not affect the Ki for NADH. Magnesium citrate, which was about 100-fold more effective as a positive modifier of the enzyme with ADP than without ADP [Gabriel, J. L., & Plaut, G. W. E. (1983) Fed. Proc., Fed. Am. Soc. Exp. Biol. 42, 2082], reversed competitively the inhibition by NADPH in the presence of ADP, but not without ADP. Magnesium citrate did not reverse NADH inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

15.
Glycerol-3-phosphate oxidoreductase (sn-glycerol 3-phosphate: NAD+ 2-oxidoreductase, EC 1.1.1.8) from human placenta has been purified by chromatography on 2,4,6-trinitrobenzenehexamethylenediamine-Sepharose, DEAE-Sephadex A-50 and 5'-AMP-Sepharose 4B approximately 15800-fold with an overall yield of about 19%. The final purified material displayed a specific activity of about 88 mumol NADH min-1 mg protein-1 and a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The native molecular mass, determined by Ultrogel AcA 44 filtration, was 62000 +/- 2000 whereas the subunit molecular mass, established on polyacrylamide gel in the presence of 0.1% sodium dodecyl sulphate, was 38000 +/- 500. The isoelectric point of the enzyme protein, determined by column isoelectric focusing, was found to be 5.29 +/- 0.09. The pH optimum of the placental enzyme was in the range 7.4-8.1 for dihydroxyacetone phosphate reduction and 8.7-9.2 for sn-glycerol 3-phosphate oxidation. The apparent Michaelis constants (Km) for dihydroxyacetone phosphate, NADH, sn-glycerol 3-phosphate and NAD+ were 26 microM, 5 microM, 143 microM and 36 microM respectively. The activity ratio of cytoplasmic glycerol-3-phosphate oxidoreductase to mitochondrial glycerol-3-phosphate dehydrogenase in human placental tissue was 1:2. The consumption of oxygen by human placental mitochondria incubated with the purified glycerol-3-phosphate oxidoreductase, NADH and dihydroxyacetone phosphate was similar to that observed in the presence of sn-glycerol 3-phosphate. The possible physiological role of glycerol-3-phosphate oxidoreductase in placental metabolism is discussed.  相似文献   

16.
A ferredoxin-NAD+ oxidoreductase (EC 1.18.1.3) has been isolated from extracts of the obligate methanotroph Methylosinus trichosporium OB3b. This enzyme was shown to couple electron flow from formate dehydrogenase (NAD+ requiring) to ferredoxin. Ferredoxin-NAD+ reductase was purified to homogeneity by conventional chromatography techniques and was shown to be a flavoprotein with a molecular weight of 36,000 +/- 1,000. This ferredoxin reductase was specific for NADH (Km, 125 microM) and coupled electron flow to the native ferredoxin and to ferredoxins from spinach, Clostridium pasteurianum, and Rhodospirillum rubrum (ferredoxin II). M. trichosporium ferredoxin saturated the ferredoxin-NAD+ reductase at a concentration 2 orders of magnitude lower (3 nM) than did spinach ferredoxin (0.4 microM). Ferredoxin-NAD+ reductase also had transhydrogenase activity which transferred electrons and protons from NADH to thionicotinamide adenine dinucleotide phosphate (Km, 9 microM) and from NADPH to 3-acetylpyridine adenine dinucleotide (Km, 16 microM). Reconstitution of a soluble electron transport pathway that coupled formate oxidation to ferredoxin reduction required formate dehydrogenase, NAD+, and ferredoxin-NAD+ reductase.  相似文献   

17.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

18.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

19.
In rat adrenal gland and gastric mucosa putrescine is efficiently oxidized to GABA via gamma-aminobutyraldehyde (ABAL) by action of diamine oxidase and aldehyde dehydrogenase. Having turned our attention on the rat intestinal mucosa, where putrescine uptake and diamine oxidase are active, we have purified and characterized an aldehyde dehydrogenase optimally active on gamma-aminobutyraldehyde. A dimer with a subunit molecular weight of 52,000, the native enzyme binds ABAL and NAD+ with high affinity: at pH 7.4, Km values are equal to 18 and 14 microM, respectively. Affinity for betaine aldehyde is much lower (Km = 285 microM), but the efficiency is equally good, thanks to a high value of V. Unaffected by disulfiram and Mg2+, the enzyme is activated by high NAD+ concentrations (Vnn = 1.6 x Vn) and is competitively inhibited by NADH. According to the best fitting model, the dimeric enzyme only binds one NADH and the mixed complex enzyme-NAD(+)-NADH is inactive. The increase of activity promoted by NAD+ can therefore be ascribed to an allosteric effect, rather than to the activation of a second reaction center. Highly stable at pH 6.8 in the presence of dithiothreitol and high phosphate concentrations, ABALDH is inactivated by ion-exchange resins and by cationic buffers. Our results show that the enzyme can be effectively involved in the metabolism of biogenic amines and, with a K(m) for ABAL lower than 20 microM, in the synthesis of GABA.  相似文献   

20.
1. AMP is an activator of the pyruvate dehydrogenase complex of the Ehrlich--Lettré ascites tumour, increasing its V up to 2-fold, with Ka of 40 microM at pH 7.4. This activation appears to be an allosteric effect on the decarboxylase subunit of the complex. 2. The pyruvate dehydrogenase complex has a Km for pyruvate within the range 17--36 microM depending on the pH, the optimum pH being approx. 7.4, with a V of approx. 0.1 unit/g of cells. The rate-limiting step is dependent on the transformation of the enzyme--substrate complex. The Km for CoA is 15 microM. The Km for NAD+ is 0.7 mM for both the complex and the lipoamide dehydrogenase. The complex is inhibited by acetyl-CoA competitively with CoA; the Ki is 60 microM. The lipoamide dehydrogenase is inhibited by NADH and NADPH competitively with NAD+, with Ki values of 80 and 90 microM respectively. In the reverse reaction the Km values for NADH and NADPH are essentially equal to their Ki values for the forward reaction, the V for the latter being 0.09 of that of the former. Hence the reaction rate of the complex in vivo is likely to be markedly affected by feedback isosteric inhibition by reduced nicotinamide nucleotides and possibly acetyl-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号