首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A γ-glutamyltransferase activity is found in the human red blood cell membrane.Membrane isolation was carried out according to the method of Dodge et al. (Dodge, J. T., Mitchell, C. and Hanahan, J. (1963) Arch. Biochem. Biophys. 100, 119–130) (modified) and proteins were solubilized either with 1 % sodium deoxycholate or 5 mM EDTA or 10 mM of its disodium salt, under various conditions of time and temperature. The γ-glutamyltransferase activity of the membrane preparations was investigated using two substrates, γ-l-glutamyl-p-nitroanilide and γ-lglutamyl-α-naphthylamide.The specific enzymatic activities of the various preparations, expressed in munits per mg of protein, were found to have similar values under similar technical conditions. The chelating agents seem to allow a more specific isolation than the detergent.The presence of a γ-glutamyltransferase activity in the erythrocyte membrane is discussed in relation to the membrane association of this enzyme in other tissues.  相似文献   

2.
The distribution of adenylate cyclase (AC) in Golgi and other cell fractions from rat liver was studied using the Golgi isolation procedure of Ehrenreich et al. In liver homogenate the AC activity was found to decay with time, but addition of 1 mM EGTA reduced the rate of enzyme loss. The incorporation of 1 mM EGTA into the sucrose medium used in the initial two centrifugal steps of the Golgi isolation method stabilized the enzyme activity throughout the entire procedure and resulted in good enzyme recovery. In such preparations, AC activity was demonstrated to be associated not only with plasma membranes but also with Golgi membranes and smooth microsomal membranes as well. Furthermore, under the conditions used, enzyme activity was also associated with the 105,000 g x 90 min supernatant fraction. The specific activity of the liver homogenate was found to be 2.9 pmol-mg protein-1-min-1, the nonsedimentabel and microsomal activity was of the same order of magnitude, but the Golgi and plasma membrane activities were much higher. The specific activity of plasma membrane AC was 29 pmol-mg proten-1-min-1. The Golgi activity varied in the three fractions, with the highest activity (14 pmol) in GF1 lowest activity (1.8) in GF2, and intermediate activity (5.5) in GF3, when the Golgi activity was corrected for the presence of content protein, the activity in GF1 became much higher (9 x) than that of the plasma membrane while the activities in GF2 and GF3 were comparable to that of plasma membrane. In all locations studied, the AC was sensitive to NaF stimulation, especially the enzyme associated with Golgi membranes. The activities in plasma and microsomal membranes were stimulated by glucagon, whereas the Golgi and nonsedimentable AC were not.  相似文献   

3.
An accurate, precise, and convenient procedure was developed for measurement of the latency of the low-Km mannose-6-phosphatase activity for the purpose of assessment of the membrane permeability barrier in microsomes. This approach is based on previous work of Arion et al. [J. Biol. Chem. (1976) 251, 4901-4907] and consists of measurement of mannose-6-phosphatase activity in the untreated microsomal fraction and in the corresponding microsomes that are fully disrupted in order to eliminate the membrane permeability barrier. Complete disruption of rat liver microsomes was achieved by incubation for 60 min at 0 degree C in the presence of 4 mM zwitterionic detergent 3-[(3-cholamido-propyl)dimethyl-ammonio]-2-hydroxy-1-propane sulphonate (Chapso). That the microsomal membrane permeability barrier was eliminated under those conditions was suggested by the fact that the enzyme activation (up to 50-fold) produced by this pretreatment was at least as large as the effect of any other previously reported disruptive procedure. Disruption of the microsomes by Chapso or by ultrasonication markedly enhanced the thermolability of the mannose-6-phosphatase activity. In addition, exposure of the microsomes to high concentrations of Chapso produced enzyme inactivation that could be partially reversed by dilution of the detergent prior to assaying the enzymic activity. Investigation of these enzyme inactivation phenomena under various incubation conditions for disruption of the microsomes by Chapso and for subsequent assay of mannose-6-phosphatase activity in the presence of Chapso enabled us to define conditions under which instability of the enzyme was undetectable. Using these optimized procedures for disruption of microsomes and assay of hexose-6-P phosphohydrolase, we found that the low-Km mannose-6-phosphatase activity of untreated rat liver microsomes consistently was less than 5% of the total enzyme activity in the fully disrupted microsomes. Accurate and precise assay of the structural latency of mannose-6-phosphatase in membrane preparations must be performed under well-controlled conditions, with special attention to the marked thermolability of the enzyme in the presence of detergent, and is a prerequisite for using this approach for the purpose of assessing intactness of microsomal preparations.  相似文献   

4.
5.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

6.
Gamma-Glutamyltransferase activity was detected in the plasma membrane of the highly differentiated hepatoma cell line Fao, (0.93 mU/mg cell protein). Dexamethasone (1 microM) provoked a 2-3-fold increase in the activity of the enzyme in the presence of fetal calf serum. Maximal induction occurred 48-72 h after addition of the glucocorticoid to the cell culture medium. The hormonal specificity was demonstrated by the relative potencies of several glucocorticoids and sex steroids: hydrocortisone and corticosterone increased gamma-glutamyltransferase activity while tetrahydrocorticosterone and all sex steroids tested were ineffective. The effect of dexamethasone on gamma-glutamyltransferase activity wa specific since the activities of several other plasma membrane enzymes were not modified. The mechanism of the dexamethasone-induced increase in gamma-glutamyltransferase activity was neither by modification of the affinity of the enzyme for its substrates nor by alteration of the subcellular distribution of the enzyme. This increase was prevented by cycloheximide and actinomycin D. The data presented are consistent with a specific glucocorticoid receptor-mediated induction of gamma-glutamyltransferase activity in Fao cells. The kinetic parameters of the induction process by glucocorticoids are very similar to those found in adult rat liver. These results suggest that the Fao cell line is a very convenient system for the study of the molecular mechanisms of glucocorticoid effects on differentiated cells.  相似文献   

7.
We recently reported that type D botulinum neurotoxin ADP-ribosylates a specific protein of Mr 21,000 in membrane fractions of various tissues (Ohashi, Y. and Narumiya, S. (1987) J. Biol. Chem. in press). We examined similar enzyme activities in other types (types A, B, C1 and E) of botulinum neurotoxins. Of these, only type C1 toxin showed the activity similar to type D toxin and ADP-ribosylated the same Mr 21,000 protein in membranes of mouse brain. No enzyme activities were detected in type A, B and E toxins under the present experimental conditions. GTP stimulated ADP-ribosylation by the two toxins in a concentration dependent manner from 10 nM to 100 microM. The maximum stimulation was about 6 fold. GDP was 10 times less potent than GTP and achieved similar maximum at 1 mM, while GMP, ADP and ATP had little effect. Several guanidino-containing compounds dose-dependently inhibited the activities of both toxins. The IC50 values were 8.5, 14.5 and 45 mM for agmatine, L-arginine methyl ester and guanidine, respectively.  相似文献   

8.
L-ethionine has been found to inhibit uracil tRNA methylating enzymes in vitro under conditions where methylation of other tRNA bases is unaffected. No selective inhibitor for uracil tRNA methylases has been identified previously. 15 mM L-ethionine or 30 mM D,L-ethionine caused about 40% inhibition of tRNA methylation catalyzed by enzyme extracts from E. coli B or E. coli M3S (mixtures of methylases for uracil, guanine, cytosine, and adenine) but did not inhibit the activity of preparations from an E. coli mutant that lacks uracil tRNA methylase. Analysis of the 14CH3 bases in methyl-deficient E. coli tRNA after its in vitro methylation with E. coli B3 enzymes in the presence or absence of ethionine showed that ethionine inhibited 14CH3 transfer to uracil in tRNA, but did not diminish significantly the 14CH3 transfer to other tRNA bases. Under similar conditions 0.6 mM S-adenosylethionine and 0.2 mM ethylthioadenosine inhibited the overall tRNA base methylating activity of E. coli B preparations about 50% but neither of these ethionine metabolites preferentially inhibited uracil methylation. Ethionine was not competitive with S-adenosyl methionine. Uracil methylation was not inhibited by alanine, valine, or ethionine sulfoxide. It is suggested that the thymine deficiency that we found earlier in tRNA from ethionine-treated E. coli B cells, resulted from base specific inhibition by the amino acid, ethionine, of uracil tRNA methylation in vivo.  相似文献   

9.
(1) Intestinal absorption is altered under a variety of circumstances in health and disease and to determine a possible relationship between intestinal absorptive function and intestinal brush border membrane composition, we undertook the isolation and purification of rabbit jejunal and ileal brush borders, to allow further studies of their lipid composition under varied experimental conditions. (2) A modification of an established method (Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J. and Crane, R.K. (1973) Biochim. Biophys. Acta 323, 98-112) utilized CaCl2 aggregation and sequential centrifugation followed by purification of the brush border pellet (P2) at 27,000 X g on a PercollTM (Pharmacia) self-forming gradient. The PercollTM was removed by ultracentrifugation for 30 min at 100 000 X g, utilizing a batch rotor in the Beckman airfugeTM. (3) Pure brush border membrane vesicles were obtained and characterized by specific marker analysis and electron microscopy. Comparative marker analyses performed on P2 and final PercollTM preparations from animals showed that the purification achieved was 8-11-fold greater when compared to the original homogenates. Verification of purity was also demonstrated by the absence of DNA and very low levels of Beta-gluconridase and (Na+ + K+)-ATPase in the PercollTM preparations. (4) Comparative lipid analyses of P2 and final PercollTM preparations showed that levels of total phospholipid and free fatty acids were several-fold higher in the PercollTM preparations on a per mg protein basis. (5) A comparison of the activity of enzyme markers and the levels of total free fatty acids in P2 pellets obtained after Cacl2 and MgCl2 aggregation showed that CaCl2 aggregation gave the more consistently reproducible results. (6) Although standard procedures of membrane preparations not involving density gradient separation provide membranes of reasonable purity for the estimation of lipid components, we consider the final purification step of density gradient separation using PercollTM is essential for determining small quantitative changes which might occur in the membrane lipid composition under experimental conditions were intestinal absorptive function is altered.  相似文献   

10.
Human skin fibroblasts, grown to confluency in the presence of 32P for random labelling of the phospholipids, showed upon 24 h incubation in the presence of either 8 mM L-serine or 4 mM ethanolamine an increased content of phosphatidylserine (150% of control cells) or phosphatidylethanolamine (116% of control cells), respectively. Concomitantly the phosphatidylcholine correspondingly decreased. Upon cell harvesting and gentle enzyme preparation the base-treated cells demonstrated a significantly higher unstimulated, fluoride- and thyrotropin-stimulated activity of adenylate cyclase. The activities of total ATPase, ouabain-sensitive ATPase, 5'-nucleotidase and gamma-glutamyltransferase remained unaltered. When subjecting enzyme preparations from fibroblasts to ultrasonication the activity of adenylate cyclase decreased progressively with energy applied, whereas the activities of the other enzymes were unaltered ((K+ + Na+)-ATPase, 5'-nucleotidase) or even increased (Mg2+-ATPase, gamma-glutamyltransferase). The results have a bearing upon the regulatory function of the phospholipid microenvironment of membrane-bound enzymes.  相似文献   

11.
The characteristics of myocardial guanylate cyclase (GTP pyrophosphatelyase, EC 4.6.1.2) were studied. Specific activity of the myocardial enzyme in five vertebrate species was guinea pig greater than man greater than cat greater than dog greater than rat. In the guinea pig, guanylate cyclase activity was uniformly distributed throughout the anatomical regions of the heart. The major portion of the enzyme activity was retrieved in the supernatant fraction after centrifugation at 12 000 times g. The Km for GTP was similar in supernatant (0.12 mM) and particulate (0.21 mM) preparations, although the Ka for Mn2+ in particulate preparations (0.3-0.6 mM) was less than that observed for guanylate cyclase in the supernatant fraction (0.8-2.0 mM). ATP competitively inhibited supernatant and particulate activity. Addition of 0.005-10.0 mM Ca2+ to assay incubations did not enhance guanylate cyclase activity. Suspension of 105 000 times g supernatant guanylate cyclase preparations with membrane lipids or phosphatidylserine stimulated activity 1.4-4.3 fold, whereas similar treatment of particulate preparations caused little alteration of enzyme activity. Addition of the cholinergic agonists acetylcholine, carbachol or methacholine (10-4-10-8 M) to homogenate, supernatant, particulate and disrupted tissue slice preparations in the presence of 0.0012-1.2 mM GTP, 0.3-10.0 mM Mn2+ and 0.005-10.0 mM Ca2+ or 0.0012-1.2 mM ATP did not stimulate guanylate cyclase activity. Similarly, further stimulation of guanylate cyclase activity was not elicited when enzyme-lipid suspensions were assayed in the presence of cholinergic agents.  相似文献   

12.
A study has been made of the factors and mechanism leading to appearance of the so-called EcoRI activity described by Polisky et al. (1975) in the restrictase EcoRI preparations. The preparations of purified restrictase EcoRI, precipitated at 0.9 ammonium sulphate saturation, as well as that obtained using standard techniques have been found to contain an admixture of an endonuclease which at neutral pH and high ionic strength multiply cleaves those DNAs which normally have only one recognition site for EcoRI. Under the standard conditions for EcoRI digestion this activity is found only when large amounts of freshly isolated enzyme are added to the incubation mixture and it is sharply enhanced by replacement of Mg2+ with Mn2+. The number and size of DNA fragments produced under such conditions practically do not differ from those found under the so-called EcoRI conditions, that is for alkaline pH values and low ionic strength. The optimum incubation mixture for the EcoRI activity has been found to be 10 mM Tris . HCl buffer (pH 8.8) + 2 mM Mn2+. Similar activity is induced also by addition to EcoRI solution of 40--50% glycerol or a number of organic solvents (dimethylacetamide (DMA), dimethylformamide (DMF), dimethylsulphoxide (DMSO), sulphalane (SP) in concentrations from 1 to 6%. The EcoRI activity induced by 50% glycerol or at alkaline pH values and low ionic strength is suppressed or sharply inhibited by 2--3 mM parachloromercuribenzoate (PCMB), while EcoRI is not sensitive to this agent. The DNA fragments cleaved by EcoRI have cohesive termini and can be easily ligated. It is suggested that the EcoRI activity can be due not only (or largely not) to modification of the "recognizing capacity" of the EcoRI restrictase but not activation of a latent specific endonuclease which is present in the restrictase preparation as an impurity.  相似文献   

13.
Regulation of the activity of the mitochondrial enzyme phosphatidylserine decarboxylase (PSD) was measured in vitro by using membrane preparations from wild-type and mutant strains of Saccharomyces cerevisiae. PSD specific activity was not affected by carbon source, and on all carbon sources, the highest specific activity was observed in cells entering the stationary phase of growth. However, PSD activity was found to be regulated in response to soluble precursors of phospholipid biosynthesis. PSD specific activity was reduced to about 63% of the level observed in unsupplemented wild-type cells when the cells were grown in the presence of 75 microM inositol. The presence of 1 mM choline alone had no repressing effect, but the presence of 1 mM choline and 75 microM inositol together led to further repression to a level of about 28% of the derepressed activity. Regulatory mutations known to affect regulation or expression of genes encoding phospholipid-synthesizing enzymes also affected PSD specific activity. opi1 mutants, which are constitutive for a number of phospholipid-biosynthetic enzymes, were found to have high, constitutive levels of PSD. Likewise, in ino2 or ino4 regulatory mutants, PSD activity was found to be at the fully repressed level regardless of growth condition. Regulation of PSD activity was also affected in several structural-gene mutants under conditions of impaired phosphatidylcholine biosynthesis. Together, these data strongly suggest that PSD expression is controlled by the mechanism of general control of phospholipid biosynthesis that regulates many enzymes of phospholipid biosynthesis.  相似文献   

14.
Prostaglandin H synthase (PHS) from ram seminal vesicle microsomes was found to catalyze the release of tritium (3H) from estradiol (E2) regiospecifically labeled in position C-2 or C-4 of ring A but not from positions C-17 alpha, C-16 alpha, or C-6,7. Formation of 3H2O from ring A of E2 is dependent upon native enzyme supplemented with either arachidonic acid, eicosapentaenoic acid, or hydrogen peroxide and proceeds very rapidly as do other cooxidation reactions catalyzed by PHS-peroxidase. The 3H-loss from ring A of E2 reflecting oxidative displacement of this isotope by PHS increases linearly up to 100 microM under our conditions (8-45 nmol/mg x 5 min). Loss of tritium in various blanks is negligible by comparison. Indomethacin (0.07 and 0.2 mM) inhibited the PHS-dependent release of 3H2O from estradiol but less efficiently than it inhibited DES-cooxidation measured in parallel incubations under similar conditions. Addition of EDTA (0.5 mM) had no effect on the regiospecific transfer of 3H from E2 or on DES-oxidation; ascorbic acid (0.5 mM) or NADH (0.33 mM) clearly inhibited both reactions and to a similar extent. These data suggest that estradiol-2/4-hydroxylation can be catalyzed by PHS in vitro probably via its peroxidase activity and point to PHS as an enzyme that could contribute to catechol estrogen formation in vitro by tissue preparations in the presence of unsaturated fatty acids or peroxides.  相似文献   

15.
Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.  相似文献   

16.
The subcellular localization of gamma-glutamyltransferase in calf thymocytes was investigated and compared with that of alkaline phosphodiesterase I, alkaline nitrophenyl phosphatase, succinate-tetrazolium oxidoreductase (succinate-INT reductase) and lactate dehydrogenase after two different methods of cell disruption and differential centrifugation. Most of the activity was recovered in the crude membrane fractions (43.0%), but significant amounts co-pelleted with the large-granule (mitochondria) fractions (31%). The specific activity of the gamma-glutamyltransferase in the purified plasma membrane was 30-50 times that of the enzyme in the cell homogenate and had a similar subcellular distribution to the plasma-membrane markers, alkaline phosphodiesterase I and alkaline nitrophenyl phosphatase. It was concluded that gamma-glutamyltransferase was primary a plasma-membrane-bound enzyme, and that its location in other subcellular fractions was probably due to their contamination with plasma-membrane vesicles.  相似文献   

17.
Raymond Portalier  A. Worcel 《Cell》1976,8(2):245-255
Gentle lysis of E. coli cells in the presence of a DNA counterion (either 1.0 M NaCl or 5 mM spermidine) permits the isolation of the folded intact bacterial chromosome associated with membrane fragments. Most of the proteins in these chromosomes are also found in purified membrane preparations, and they can be identified as belonging to either the inner or the outer bacterial membrane.Ultraviolet irradiation of the membrane-attached chromosomes causes the formation of a stable complex between two inner membrane proteins (molecular weight 80,000 and 56,000 daltons) and 5-bromodeoxyuridine (BrdU)-substituted DNA. The photochemical attachment of BrdU-substituted DNA to specific membrane proteins suggests that these proteins may be bound to the DNA in vivo. Such DNA-membrane-binding proteins may have a role in the attachment of the folded chromosome to the bacterial envelope.  相似文献   

18.
A novel phospholipase activity was recognized in intact, rat jejunal brush-border membranes and its effect on membrane lipid composition was evaluated following various incubation protocols. Brush-border membranes were isolated from mucosal scrapings by a combination of existing techniques. A brush-border plus nuclei fraction was first prepared by homogenization and low-speed centrifugation in isotonic mannitol, in the presence of 5 mM EDTA. Brush-border membrane vesicles were isolated from this fraction by homogenization, followed by precipitation of the remaining undesired membranes with 10 mM CaCl2. Membranes were judged to be highly purified by marker enzyme content, protein profile, and electron microscopy. In total lipid extracts, prepared immediately following membrane isolation, the ethanolamine phosphatides were found to be the major phospholipid class, accounting for nearly 45% of the total lipid phosphorus. Storage of the intact membranes, at either room temperature or at -20 degrees C, but not at -70 degrees C, resulted in a gradual and progressive hydrolysis of phosphatidylethanolamine to lysophosphatidylethanolamine. Over 60% of the total ethanolamine phospholipid was converted to the lyso form during a 2 week storage period. Incubation of the intact membranes at 37 degrees C produced a similar effect in one hour. Only small amounts of other glycerophospholipids were degraded under these conditions. Hydrolysis was specific for the sn-2 position as more than 80% of the fatty acids in the lysophosphatidylethanolamine were found to be saturated. Substitution of MgCl2 for CaCl2 in the precipitation step did not block the hydrolysis. It was concluded that rat brush-border membranes contain a Ca2+-independent phospholipase A2 with a high substrate preference for phosphatidylethanolamine. The physiological significance of this enzyme is not known.  相似文献   

19.
A phospholipase A1 activity that hydrolyzed cardiolipin to triacyl- and diacyl-lysocardiolipin was localized in outer membrane preparations derived from Acinetobacter sp. HO1-N. The specific activity of the enzyme derived from hexadecane-grown cells was 2.5 to 3 times higher than that derived from NBYE-grown cells. An apparent Km of 2.22 mM was determined, although inhibition kinetics resulted at the higher cardiolipin substrate concentrations. Optimal reaction conditions established on metal requirements. Enzyme activity was obligately dependent on Triton X-100 (0.5%) and was inhibited by cationic and anionic detergents. Cardiolipin-specific phospholipase D converted triacyl-lysocardiolipin to lysophosphatidylglycerol and phosphatidic acid. The specific activity of this enzyme was approximately 100 times greater than that reported for other membrane preparations derived from microorganisms.  相似文献   

20.
The regulation of cell chloride activity in frog skin was investigated using double barrelled Cl--microelectrodes to measure cell membrane potentials and chloride activity in the isolated frog epidermis. Experiments were done under short-circuit conditions, impaling cells from the serosal side. The basic electrophysiological parameters of the isolated skin were similar to those reported in the literature for whole preparations. Intracellular chloride activity was on average 21.9 mM and membrane potential was about 57 mV, implying that chloride was distributed away from its electrochemical equilibrium (i.e., concentrated inside the cells). Chloride activity decreased after removal of either Cl- or Na+ from the serosal bathing solution, with no change in membrane potential. The chloride permeability of the serosal membrane was calculated to be 2.6 X 10(-6) cm X s-1 which represents about 1/4 of the total conductance of the serosal membrane. We suggest that an electrically silent sodium-dependent uphill transport of chloride is present at the basolateral membrane of the frog skin, which accounts for the non-passive distribution of chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号