首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisomes isolated on sucrose density gradients from homogenates of rat, chicken, or dog livers and rat kidney contained NAD+:α-glycerol phosphate dehydrogenase. Since the amount of sucrose in the peroxisomal fraction inhibited the enzyme activity about 70%, it was necessary to remove the sucrose by dialysis. About 8.4% of the total dehydrogenase of rat livers was in the surviving intact peroxisomes after homogenation. If corrected for particle breakage, this represented approximately 21% of the total activity. About 9.5% of the total enzyme was isolated in rat kidney peroxisomes, and because of severe particle rupture may represent over half of the total activity. No glycerol phosphate dehydrogenase was found in spinach leaf peroxisomes. A specific activity of 326 nmoles min?1 mg?1 protein in the rat liver peroxisomal fraction was at least twice that in the cytoplasm. NAD+:α-glycerol phosphate dehydrogenase was also present in a membrane fraction which was not identified, but none was in the mitochondria. The liver peroxisomal and cytoplasmic NAD+:α-glycerol phosphate dehydrogenase moved similarly on polyacrylamide gels and each resolved into two adjacent bands.Malate dehydrogenase was not found in peroxisomes from liver and kidney of rats and pigs, but 1–2% of the total particulate malate dehydrogenase was present in the peroxisomal area of the gradient from dog livers. However, this malate dehydrogenase in dog peroxisomal fractions did not exactly coincide with the peroxisomal marker, catalase. Malate dehydrogenase in dog liver mitochondria and in the peroxisomal fraction had similar pH optima and Km values and migrated similarly to the anode at pH 6.5 on starch gels as a major and a minor band. The cytoplasmic malate dehydrogenase had a different pH optimum and Km value and resolved into five different isoenzymes by electrophoresis. It is concluded that NAD+:α-glycerol phosphate dehydrogenase is in peroxisomes of liver and kidney, whereas malate dehydrogenase, present in peroxisomes of plants, is apparently absent in animal peroxisomes.  相似文献   

2.
A study was made of the effect of chronic administration of the hypolipidemic drug clofibrate on the activity and intracellular localization of rat liver aldehyde dehydrogenase. The enzyme was assayed using several aliphatic and aromatic aldehydes. Clofibrate treatment caused a 1.5 to 2.3-fold increase in the liver specific aldehyde dehydrogenase activity. The induced enzyme has a high Km for acetaldehyde and was found to be located in peroxisomes and microsomes. Clofibrate did not alter the enzyme activity in the cytoplasmic fraction. The total peroxisomal aldehyde dehydrogenase activity increased 3 to 4-fold under the action of clofibrate. Disruption of the purified peroxisomes by the hypotonic treatment or in the alkaline conditions resulted in the release of catalase from the broken organelles, while aldehyde dehydrogenase as well as nucleoid-bound urate oxidase and the peroxisomal membrane marker NADH:cytochrome c reductase remained in the peroxisomal 'ghosts'. At the same time, treatment by Triton X-100 led to solubilization of the membrane-bound NADH:cytochrome c reductase and aldehyde dehydrogenase from intact peroxisomes and their 'ghosts'. These results indicate that aldehyde dehydrogenase is located in the peroxisomal membrane. The peroxisomal aldehyde dehydrogenase is active with different aliphatic and aromatic aldehydes, except for formaldehyde and glyceraldehyde. The enzyme Km values lie in the millimolar range for acetaldehyde, propionaldehyde, benzaldehyde and phenylacetaldehyde and in the micromolar range for nonanal. Both NAD and NADP serve as coenzymes for the enzyme. Aldehyde dehydrogenase was inhibited by disulfiram, N-ethylmaleimide and 5,5'-dithiobis(2-nitrobenzoic)acid. According to its basic kinetic properties peroxisomal aldehyde dehydrogenase seems to be similar to a clofibrate-induced microsomal enzyme. The functional role of both enzymes in the liver cells is discussed.  相似文献   

3.
The inhibition of aldehyde dehydrogenase by cyanamide is dependent on an enzyme catalyzed conversion of the latter to an active metabolite. The following results suggest that catalase is the enzyme responsible for this bioactivation. The elevation of blood acetaldehyde elicited by cyanamide after ethanol administration to rats was attenuated more than 90 percent by pretreatment with the catalase inhibitor, 3-amino-1,2,4-triazole. This attenuation was dose dependent and was accompanied by a reduction in total hepatic catalase activity. Although hepatic catalase was also inhibited by cyanamide, a positive correlation between blood acetaldehyde and hepatic catalase activity was observed. In vitro, the activation inhibitor, 3-amino-1,2,4-triazole. This attenuation was dose dependent and was accompanied by a reduction in total hepatic catalase activity. Although hepatic catalase was also inhibited by cyanamide, a positive correlation between blood acetaldehyde and hepatic catalase activity was observed. In vitro, the activation of cyanamide was catalyzed by a) the rat liver mitochondrial subcellular fraction, b) the 50-65% ammonium sulfate mitochondrial fraction and c) purified bovine liver catalase. Cyanamide activation was inhibited by sodium azide. Since much of the hepatic catalase is localized in the peroxisomes and since peroxisomes and mitochondria cosediment, the cyanamide activating enzyme, catalase, is likely of peroxisomal and mitochondrial origin.  相似文献   

4.
Subcellular organellles from livers of rats three days prenatal to 50 weeks postnatal were separated on sucrose gradients. The peroxisomes had a constant density of 1.243 g/ml throughout the life of the animal. The density of the mitochondria changed from about 1.236 g/ml at birth to a constant value of 1.200 g/ml after two weeks. The peroxisomal and mitochondrial fatty acid beta-oxidation and the peroxisomal and supernatant activities of catalase and glycerol-3-phosphate dehydrogenase were measured at each age, as well as the peroxisomal core enzyme, urate oxidase, and the mitochondrial matrix enzyme, glutamate dehydrogenase. All of these activities were very low or undetectable before birth. Mitochondrial glutamate dehydrogenase and peroxisomal urate oxidase reached maximal activities per g of liver at two and five weeks of age, respectively. Fatty acid beta-oxidation in both peroxisomes and mitochondria and peroxisomal glycerol-3-phosphate dehydrogenase exhibited maximum activities per g of liver between one and two weeks of age before weaning and then decreased to steady state levels in the adult. Peroxisomal beta-oxidation accounted for at least 10% of the total beta-oxidation activity in the young rat liver, but became 30% of the total in the liver of the adult female and 20% in the adult male due to a decrease in mitochondrial beta-oxidation after two weeks of age. The greatest change in beta-oxidation was in the mitochondrial fraction rather than in the peroxisomes. At two weeks of age, four times as much beta-oxidation activity was in the mitochondria as in the peroxisomal fraction. Peroxisomal glycerol-3-phosphate dehydrogenase activity accounted for 5% to 7% of the total activity in animals younger than one week, but only 1% to 2% in animals older than one week. Up to three weeks of age, 85% to 90% of the liver catalase was recovered in the peroxisomes. The activity of peroxisomal catalase per g of rat liver remained constant after three weeks of age, but the total activity of catalase further increased 2.5- to 3-fold, and all of the increased activity was in the supernatant fraction.  相似文献   

5.
Hepatic peroxisomes have been isolated on isopycnic sucrose gradients from white mice [HA(ICR)] and lean and obese (C57BL/6J) mice. Nearly all of the catalase activity was in the peroxisomal fraction. The activity for β-oxidation of palmitoyl-CoA was about threefold higher per milligram of protein in the isolated peroxisomal fraction or per gram of liver from the obese mouse compared to its lean littermates. Glycerol-3-phosphate dehydrogenase activity also was higher in the peroxisomes and cytoplasm of the obese mouse. The matrix enzymes of the organelles, catalase and urate oxidase of the peroxisome and glutamate dehydrogenase of the mitochondria, had similar activities per gram of liver from either lean or obese mice. Membrane components, NADPH: cytochrome c reductase of the microsomes and β-hydroxybutyrate dehydrogenase of the mitochondria, had lower activities in the obese mouse in inverse proportion to the larger size of the liver.  相似文献   

6.
The effect of chronic administration of a hypolipaemic agent--clofibrate--on the subcellular distribution of liver enzymes in male rats was studied. Clofibrate produced an increase in the number of peroxisomes and also enhanced the activity of aconitase and histidine: glyoxylate aminotransferase (HGA) in liver homogenate. Differential centrifugation of homogenate revealed an elevation of the relative amounts of catalase, HGA and isocitrate dehydrogenase in the soluble cell fraction in clofibrate pretreated animals. Clofibrate induced peroxisomal HGA but failed to alter the amounts of catalase, urate oxidase and isocitrate dehydrogenase in the particles. In both the experimental and control groups the activity of aconitase, malate dehydrogenase (NAD+), creatine phosphokinase and glutathione reductase was observed in mitochondrial fractions and was not detected in purified peroxisomes.  相似文献   

7.
The peroxisomal localization and characterization of NADP-dependent isocitrate dehydrogenase (perICDH) in young and senescent pea (Pisum sativum) leaves was studied by subcellular fractionation, kinetic analysis, immunoblotting, and immunoelectron microscopy. The subunit molecular mass for perICDH determined by immunoblotting was 46 kD. By isoelectric focusing (IEF) of the peroxisomal matrix fraction, the NADP-ICDH activity was resolved into four isoforms, perICDH-1 to perICDH-4, with isoelectric points (pIs) of 6.0, 5.6, 5.4, and 5.2, respectively. The kinetic properties of the NADP-ICDH in peroxisomes from young and senescent pea leaves were analyzed. The maximum initial velocity was the same in peroxisomes from young and senescent leaves, while the Michaelis constant value in senescent leaf peroxisomes was 11-fold lower than in young leaf peroxisomes. The protein levels of NADP-ICDH in peroxisomes were not altered during senescence. The kinetic behavior of this enzyme suggests a possible fine control of enzymatic activity by modulation of its Michaelis constant during the natural senescence of pea leaves. After embedding, electron microscopy immunogold labeling of NADP-ICDH confirmed that this enzyme was localized in the peroxisomal matrix. Peroxisomal NADP-ICDH represents an alternative dehydrogenase in these cell organelles and may be the main system for the reduction of NADP to NADPH for its re-utilization in the peroxisomal metabolism.  相似文献   

8.
Rat hepatic t protein that is negatively regulated by thyroid hormone in nuclear globulin extract was characterized by the antibodies. The following evidence indicated that t protein is a peroxisomal enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme (bifunctional enzyme). 1. Both proteins had an identical molecular size, and were immunologically indistinguishable from each other. 2. The t protein was abundant in mitochondrial fraction which contained abundant peroxisomes. 3. The amount of the t protein was increased by a peroxisomal proliferator. 4. The activity of the peroxisomal bifunctional enzyme corresponded to the t protein in CM-Sephadex column chromatography. The amount of peroxisomal bifunctional enzyme was increased by thyroidectomy and decreased by 3,5,3'- triiodo-L-thyronine treatment in the whole homogenate of rat liver. These results indicate that the levels of peroxisomal bifunctional enzyme were regulated by thyroid hormone in vivo.  相似文献   

9.
Subcellular distribution of pentose-phosphate cycle enzymes in rat liver was investigated, using differential and isopycnic centrifugation. The activities of the NADP+-dependent dehydrogenases of the pentose-phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase) were detected in the purified peroxisomal fraction as well as in the cytosol. Both dehydrogenases were localized in the peroxisomal matrix. Chronic administration of the hypolipidemic drug clofibrate (ethyl-alpha-p-chlorophenoxyisobutyrate) caused a 1.5-2.5-fold increase in the amount of glucose-6-phosphate and phosphogluconate dehydrogenases in the purified peroxisomes. Clofibrate decreased the phosphogluconate dehydrogenase, but did not alter glucose-6-phosphate dehydrogenase activity in the cytosolic fraction. The results obtained indicate that the enzymes of the non-oxidative segment of the pentose cycle (transketolase, transaldolase, triosephosphate isomerase and glucose-phosphate isomerase) are present only in a soluble form in the cytosol, but not in the peroxisomes or other particles, and that ionogenic interaction of the enzymes with the mitochondrial and other membranes takes place during homogenization of the tissue in 0.25 M sucrose. Similar to catalase, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase are present in the intact peroxisomes in a latent form. The enzymes have Km values for their substrates in the millimolar range (0.2 mM for glucose-6-phosphate and 0.10-0.12 mM for 6-phosphogluconate). NADP+, but not NAD+, serves as a coenzyme for both enzymes. Glucose-6-phosphate dehydrogenase was inhibited by palmitoyl-CoA, and to a lesser extent by NADPH. Peroxisomal glucose-6-phosphate and phosphogluconate dehydrogenases have molecular mass of 280 kDa and 96 kDa, respectively. The putative functional role of pentose-phosphate cycle dehydrogenases in rat liver peroxisomes is discussed.  相似文献   

10.
SYNOPSIS. Mitochondria and peroxisomes were isolated from homogenates of Tetrahymena pyriformis by sedimentation through a sucrose gradient. Succinate dehydrogenase was used as a mitochondrial marker; catalase and isocitrate lyase were used to mark the peroxisomal fraction. Lactate dehydrogenase, glutamate dehydrogenase, and alanine aminotransferase were found only in the mitochondrial fraction. Aspartate transaminase was found in both mitochondrial and peroxisomal fractions.  相似文献   

11.
An ultrastructural and biochemical study of the toxic and hypoglycaemic effects of hypoglycin and pent-4-enoate was made on the livers of normal and clofibrate-fed rats. Injection of hypoglycin to rats doubles (from 22% to 44%) the volume fraction of mitochondria and decreases (from 1.05% to 0.26%) the volume fraction of peroxisomes in hepatocytes. The fast-acting toxin pent-4-enoate causes few ultrastructural changes except for the accumulation of lipids. In male adult rats fed with 0.5% clofibrate in their diet for 1-2 months, the volume fraction occupied by peroxisomes and mitochondria in hepatocytes rose to 6.26% and 29.5% respectively. Clofibrate feeding apparently protected the animals against the toxic, hypoglycaemic and hypothermic effects of hypoglycin and of pent-4-enoate, and completely prevented the ultrastructural damage caused by hypoglycin. After hypoglycin administration, hepatic mitochondrial butyryl-CoA dehydrogenase activity was inhibited by more than 90% and, surprisingly, the activity of the peroxisomal enzymes studied was largely preserved. When hypoglycin was given to rats fed on a clofibrate-containing diet, the oxidation of decanoylcarnitine, which was incomplete after hypoglycin treatment alone, remained incomplete with uncoupled mitochondria, but became apparently complete with coupled mitochondria. In the latter condition, there was a slowing of the rate during the last quarter of the pulse of oxygen uptake. Further, butyryl-CoA dehydrogenase activity was much less affected by hypoglycin in clofibrate-fed animals. Pent-4-enoate does not inhibit beta-oxidation in coupled mitochondria from clofibrate-treated rats.  相似文献   

12.
We and others have previously shown that octanoate increases the oxidation of branched chain amino acids (BCAA) in skeletal muscle. The present study was designed to investigate the mechanism of this increased oxidation. Studies were performed with rat hind limbs perfused with 0.50 mM L-[1-14C]leucine with or without octanoate. The flux through branched chain keto acid (BCKA) dehydrogenase was measured, and the basal and total activity of BCKA dehydrogenase in skeletal muscle was determined. The rate of flux through BCKA dehydrogenase increased by 37, 119, and 297% with 0.5, 1.0, and 2.0 mM octanoate, respectively. This increase in flux was not due to a change in BCAA aminotransferase activity but was due to an increase in the basal activity of BCKA dehydrogenase. There was a strong correlation (r = 0.96) between increases in flux through BCKA dehydrogenase and increases in the basal activities of BCKA dehydrogenase. Preincubation of BCKA dehydrogenase with Mg2+ caused full activation of this enzyme, but preincubation with octanoate did not activate this enzyme. On the other hand, octanoate completely prevented the ATP-dependent inactivation of fully activated BCKA dehydrogenase. We conclude that octanoate increases the oxidation of leucine in skeletal muscle by increasing the activation of BCKA dehydrogenase. The mechanism of this activation is the inhibition of BCKA dehydrogenase kinase rather than the stimulation of a specific or nonspecific protein phosphatase.  相似文献   

13.
Biosynthesis of membrane polypeptides of rat liver peroxisomes   总被引:6,自引:0,他引:6  
The biosynthesis of three major peroxisomal membrane polypeptides of rat liver was investigated. Total hepatic RNA extracted by the guanidinium/CsCl method from three control and three di(2-ethylhexyl)phthalate (a peroxisomal proliferator)-fed rats was translated in vitro in a rabbit reticulocyte lysate protein-synthesizing system. Translation products were immunoprecipitated by the antibodies against peroxisomal membrane polypeptides, subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and analyzed by fluorography. The in vitro translation products of 70, 26, and 22 kDa peroxisomal membrane polypeptides were apparently of the same size as the respective mature polypeptides. The ratio of translatable mRNA levels for the 70, 26, and 22 kDa polypeptides in di(2-ethylhexyl)phthalate-fed rats to those in control rats were 5.4, 11.4, and 2.7, respectively. The synthesis of these three polypeptides with the free polysome fraction from di(2-ethylhexyl)phthalate-fed rats was more active than that with the membrane-bound polysome fraction, whereas the synthesis of albumin with the free polysome fraction was 27% of that with the membrane-bound polysome fraction. These results indicate that the peroxisomal major membrane polypeptides are synthesized on free polysomes and transported to peroxisomal membrane without any apparent proteolytic processing, and that the induction of these polypeptides by administration of a peroxisomal proliferator corresponds well to the induction of the peroxisomal beta-oxidation enzymes. The data also support the idea that peroxisomes are organized from pre-existing peroxisomes.  相似文献   

14.
A detailed subfractionation of the non-pregnant porcine corpus luteum (CL) was performed employing differential centrifugation. Marker enzyme assays (i.e., lactate dehydrogenase for the cytosol, NADPH-cytochrome P450 reductase for the endoplasmatic reticulum, catalase (CAT) for peroxisomes, glutamate dehydrogenase for the mitochondrial matrix and acid phosphatase for lysosomes) in all subfractions obtained exhibited a pattern of distribution similar to that observed with rat liver. These subfractions should be useful in connection with many types of future studies. In disagreement with previous biochemical and morphological studies, peroxisomes (identified on the basis of catalase activity and by Western blotting of catalase and of the major peroxisomal membrane protein (PMP-70)) sedimented together with mitochondria (i.e., at 5000 x g(av) for 10 min) and not in the post-mitochondrial fraction prepared at 30,000 x g(av) for 20 min by Peterson and Stevensson. No other classical peroxisomal enzymes were detectable in the porcine ovary, raising questions concerning the function of peroxisomes in this organ. Furthermore, UDP-glucuronosyltransferase (UGT), generally considered to be an integral membrane protein anchored in the endoplasmatic reticulum, was recovered in both the cytosolic (i.e., the supernatant after centrifugation at 50,000 x g(av) for 1h) and the microsomal fraction of the porcine corpus luteum, even upon further centrifugation of the former. In contrast, UGT sediments exclusively in the microsomal fraction upon subfractionation of the liver and ovary from rat.  相似文献   

15.
We have investigated whether hepatic peroxisomes are capable of synthesizing carnitine. When purified peroxisomes were incubated with gamma-butyrobetaine, a precursor of carnitine, formation of carnitine was observed. These results indicate that peroxisomes contain gamma-butyrobetaine hydroxylase, the enzyme which catalyzes the final step in the biosynthesis of carnitine. This enzyme was previously believed to be present only in the cytosol. gamma-Butyrobetaine hydroxylase activity in peroxisomes was not due to cytosolic contamination as evaluated by marker enzyme analysis. When proliferation of peroxisomes was induced by clofibrate treatment, gamma-butyrobetaine hydroxylase/mass liver increased by 7.6-fold and the specific activity by 2.5-fold. We conclude that hepatic peroxisomes synthesize carnitine and this synthesis becomes substantial under conditions of peroxisomal proliferation.  相似文献   

16.
The specific activity of a peroxisomal enzyme, lactate oxidase, and of pyruvate kinase and lactate dehydrogenase, which are not peroxisomal, increased rapidly when shaken cultures of Tetrahymena were transferred to conditions of oxygen restriction and supplemented with glucose. Two other peroxisomal enzymes, catalase and TPN-linked isocitrate dehydrogenase, did not increase substantially, nor did succinate dehydrogenase. The increases were reduced if glucose was not added at the time of transfer, and were prevented by actinomycin D or cycloheximide, but not by chloramphenicol. The results suggest an involvement of peroxisomes in the metabolism of glycolytic endproducts when the availability of oxygen to the cell is limiting.  相似文献   

17.
Enzymes of the β-oxidation pathway in rice ( Oryza sativa L., cv. Arborio) coleoptiles were investigated. The coleoptiles contain acyl-CoA oxidase (EC 1.3.99.3), 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), enoyl-CoA hydratase (EC 4.2.1.17) and thiolase (EC 2.3.1.9). Analysis of coleoptile homogenates by sucrose density fractionation showed a preferential distribution of these enzymes in the unspecialized peroxisomes. The enzymatic activity found in the mitochondrial fraction was due to peroxisomal contamination since electron micrographs show the peroxisomes to be intact and pure whereas the mitochondrial fraction was contaminated by other organelles. It appears that the β-oxidation pathway is localized in the unspecialized peroxisomes of rice coleoptiles, extending the number of plant species in which such a localization has been observed.  相似文献   

18.
For the analysis of the molecular mechanism of the action of peroxisome proliferators, we attempted to establish the optimal conditions for obtaining the effects of the chemicals in vitro, employing an established cell line, Reuber rat hepatoma H4IIEC3. Histochemical analyses revealed a marked increase in the number, size, and catalase content of peroxisomes in the cells cultured on a medium containing 0.5 mM ciprofibrate, a peroxisome proliferator. The activity of acyl-CoA oxidase, the initial enzyme of the peroxisomal beta-oxidation system, was increased by more than 10-fold by the same treatment. Catalase was also induced significantly, whereas the activities of glutamate dehydrogenase and lactate dehydrogenase, mitochondrial and cytosolic marker enzymes, did not change upon the treatment. Immunoblotting and RNA-blotting analyses confirmed the increases in the amount of protein and mRNA for all the three enzymes of the peroxisomal beta-oxidation system. Cell fractionation experiments gave a partial separation of peroxisomes from other organelles for the induced culture. Thus, H4IIEC3 cells offer a good in vitro model system of the induction of peroxisomes and peroxisomal beta-oxidation enzymes by peroxisome proliferators.  相似文献   

19.
Liver peroxisomes of two anuran amphibian species, Rana esculenta and Xenopus laevis, were studied in untreated and in clofibrate-treated adults by means of complementary technical approaches, ie, ultrastructural cytochemistry, cell fractionation and marker enzyme activity assays. In untreated adults, hepatic peroxisomes were found to be very scarce in Xenopus when compared to Rana. Activities of catalase, D-amino acid oxidase and of the three first enzymes of the peroxisomal beta-oxidation system were detected in the light mitochondrial fractions enriched in peroxisomes and prepared from livers of both species. Administration of clofibrate at a daily dose level of 60 mg (Rana) and 90 mg (Xenopus) during ten days induced a drastic peroxisome proliferation in Rana hepatocytes but had no visible effect on the hepatic peroxisomal population of Xenopus. The catalase activity and the peroxisomal beta-oxidation system of liver cells were enhanced in Rana as well as in Xenopus. The hepatic D-amino acid oxidase specific activity was increased in Rana whereas it remained rather constant in Xenopus. Taking advantage of the behaviors of Rana and Xenopus hepatic peroxisomes, the molecular mechanisms of clofibrate induction are now investigated in the target liver cells of the two amphibian species.  相似文献   

20.
Using the Hep G2 cell line as a model for the human hepatocyte the question was studied whether Hep G2-peroxisomes could be able to synthesize cholesterol. Hep G2 cell homogenates were applied to density gradient centrifugation on Nycodenz, resulting in good separation between the organelles. The different organelle fractions were characterized by assaying the following marker enzymes: catalase for peroxisomes, glutamate dehydrogenase for mitochondria and esterase for endoplasmic reticulum. Squalene synthase activity was not detectable in the peroxisomal fraction. Incubation of Hep G2 cells with U18666A, an inhibitor of the cholesterol synthesis at the site of oxidosqualene cyclase, together with heavy high density lipoprotein, which stimulates the efflux of cholesterol, led to a marked increase in the activity of squalene synthase as well as HMG-CoA reductase, whereas no significant effect on the marker enzymes was observed. Neither enzyme activity was detectable in the peroxisomal density gradient fraction, suggesting that in Hep G2-peroxisomes cholesterol synthesis from the water-soluble early intermediates of the pathway cannot take place. Both stimulated and non-stimulated cells gave rise to preparations where squalene synthase activity was comigrating with the reductase activity at the lower density side of the microsomal fraction; however, it was also present at the high density side of the microsomal peak, where reductase activity was not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号