首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have expanded our recent on-line LC-MS platform for large peptide analysis to combine collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced (CRCID) species derived from ETD to determine sites of phosphorylation and glycosylation modifications, as well as the sequence of large peptide fragments (i.e., 2000-10,000 Da) from complex proteins, such as beta-casein, epidermal growth factor receptor (EGFR), and tissue plasminogen activator (t-PA) at the low femtomol level. The incorporation of an additional CID activation step for a charge-reduced species, isolated from ETD fragment ions, improved ETD fragmentation when precursor ions with high m/z (approximately >1000) were automatically selected for fragmentation. Specifically, the identification of the exact phosphorylation sites was strengthened by the extensive coverage of the peptide sequence with a near-continuous product ion series. The identification of N-linked glycosylation sites in EGFR and an O-linked glycosylation site in t-PA were also improved through the enhanced identification of the peptide backbone sequence of the glycosylated precursors. The new strategy is a good starting survey scan to characterize enzymatic peptide mixtures over a broad range of masses using LC-MS with data-dependent acquisition, as the three activation steps can provide complementary information to each other. In general, large peptides can be extensively characterized by the ETD and CRCID steps, including sites of modification from the generated, near-continuous product ion series, supplemented by the CID-MS2 step. At the same time, small peptides (e.g., 相似文献   

2.
In order to elucidate the role of the N-terminus of insulin-like growth factor 1 (IGF-1) with respect to its biological properties, we chemically synthesized analogues of IGF-1 truncated by one to five amino acid residues from the N-terminus. In a bioassay that measured the stimulation of protein synthesis in rat L6 myoblasts, the concentrations required to produce a half-maximal response were: IGF-1, 13 ng/ml; des-(1)-IGF-1, 10 ng/ml; des-(1-2)-IGF-1, 13 ng/ml; des-(1-3)-IGF-1, 1.5 ng/ml; des-(1-4)-IGF-1, 5.1 ng/ml; des-(1-5)-IGF-1, 1200 ng/ml. When tested for their abilities to compete with 125I-IGF-1 binding to L6 myoblasts at 3 degrees C, the concentrations required for 50% competition were: IGF-1, des-(1)-IGF-1 and des-(1-2)-IGF-1, 20 ng/ml; des-(1-3)-IGF-1, 14 ng/ml; des-(1-4)-IGF-1, 40 ng/ml; des-(1-5)-IGF-1, greater than 1000 ng/ml. Receptor-binding experiments at 25 degrees C, however, gave results suggesting that the myoblasts were secreting a binding protein selective for the three longest peptides. This interpretation was confirmed by binding studies with medium conditioned by the L6 myoblasts as well as binding protein purified from MDBK-cell-conditioned medium. In both cases IGF-1, des-(1)-IGF-1 and des-(1-2)-IGF-1 competed for tracer IGF-1 binding at least 60-fold better than did the three shorter peptides. The results obtained account for the increased potency of des-(1-3)-IGF-1 and des-(1-4)-IGF-1, since their activities are not attenuated by the binding protein, and the relatively lower potency of des-(1-4)-IGF-1 is a consequence of this peptide binding less well to the L6-myoblast receptor.  相似文献   

3.
A high performance liquid chromatography (HPLC) method is described for the separation of angiotensin (Ang) peptides and their subsequent quantification by radioimmunoassay in plasma and cerebrospinal fluid (CSF). The use of the ion-pair solvent heptafluorobutyric acid in gradient HPLC achieves baseline resolution of Ang I, Ang II, and the C-terminal fragments des-[Asp1]-Ang I, des-[Asp1]-Ang II, des-[Asp1,Arg2]-Ang II and des-[Asp1,Arg2,Val3]-Ang II in approximately 25 min. Recovery of synthetic Ang standards after phenylsilica extraction and HPLC separation was greater than 70% for each peptide in both plasma and CSF. Ang I and Ang II were shown to be the major immunoreactive Ang components in plasma, and Ang II, des-[Asp1,Arg2]-Ang II and des-[Asp1,Arg2,Val3]-Ang II in CSF.  相似文献   

4.
Stable isotope tagging methods have enabled relative quantitation of proteins between samples in LC-MS/MS analyses. However, most such methods are not applicable to the differential quantitation of modified proteins because the isotope tagging reagents only react with certain peptides or because the reagents incorporate a mass increment that is too small to allow reliable quantitation on low resolution ion trap MS instruments. Here, we describe the use of d0- and d5-phenyl isocyanate (PIC) as N-terminal reactive tags for essentially all peptides in proteolytic digests. PIC reacts quantitatively with peptide N-terminal amines within minutes at neutral pH and the PIC-labeled peptides undergo informative MS/MS fragmentation. Ratios of d0- and d5-PIC-labeled derivatives of several model peptides were linear across a 10000-fold range of peptide concentration ratios, thus indicating a wide dynamic range for quantitation. Application of PIC labeling enabled relative quantitation of several styrene oxide adducts of human hemoglobin in LC-MS/MS analyses. PIC labeling offers a versatile means of quantifying changes in modified or variant protein forms in paired samples.  相似文献   

5.
Extracts of rat atria are potent stimulators of sodium and urine excretion, and relax vascular and intestinal smooth muscle preparations. The structures of six biologically active peptides obtained from atrial extracts are reported here. Ion exchange chromatography of a low molecular weight fraction obtained by gel filtration of atrial extracts produced two natriuretic fractions: the first induced relaxation of intestinal smooth muscle strips only, whereas the second also relaxed vascular strips as well. From the first fraction four pure biologically active peptides obtained by reverse phase HPLC have been sequenced: the 21 amino acid peptide, designated atriopeptin I, and three homologs (des- ser1 -, des- ser1 -ser2-, and des- ser21 - atriopeptin I). From the second fraction two pure biologically active peptides were obtained, which had C-terminal extensions of atriopeptin I: atriopeptins II (23 amino acid residues) and III (24 residues), having respectively phe-arg and phe-arg-tyr C-termini. These results suggest that this family of six peptides, sharing the same 17 membered ring formed by an internal cystine disulfide, is derived from a common high molecular weight precursor.  相似文献   

6.
1. The circular dichroism of bradykinin and a number of its analogues and homologues was measured over the spectral range 200-300nm. All of the biologically active peptides showed maxima at 220nm and minima at 235nm. The spectra were independent of solvent and temperature. The vibronic transitions of phenylalanyl residues in the 250-280nm range showed no evidence of intra- or inter-molecular interactions. We take this as evidence that bradykinin and its biologically active analogues and homologues exist in solution as disordered chains. 2. None of the analogues with spectra unlike bradykinin possessed biological activity. However, peptides such as retro-bradykinin, des-6-serine-bradykinin, des-1-arginine-bradykinin and des-9-arginine-bradykinin produced spectra like that of bradykinin but were devoid of biological activity. Although we could not identify spectral features that were clearly correlated with biological activity, it appears unlikely that highly ordered peptides of the same amino acid composition as bradykinin would possess bradykinin-like effects.  相似文献   

7.
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover peptides in extracts of the large parasitic nematode Ascaris suum. This required the assembly of a new database of known and predicted peptides. In addition to those already sequenced, peptides were either previously predicted to be processed from precursor proteins identified in an A. suum library of expressed sequence tags (ESTs) or newly predicted from a library of A. suum genome survey sequences (GSSs). The predicted MS/MS fragmentation patterns of this collection of real and putative peptides were compared with the actual fragmentation patterns found in the MS/MS spectra of peptides fractionated by MS; this enabled individual peptides to be sequenced. Many previously identified peptides were found, and 21 novel peptides were discovered. Thus, this approach is very useful, despite the fact that the available GSS database is still preliminary, having only 1× coverage.  相似文献   

8.
A very popular approach in proteomics is the so-called "shotgun LC-MS/MS" strategy. In its mostly used form, a total protein digest is separated by ion exchange fractionation in the first dimension followed by off- or on-line RP LC-MS/MS. We replaced the first dimension by isoelectric focusing in the liquid phase using the Off-Gel device producing 15 fractions. As peptides are separated by their isoelectric point in the first dimension and hydrophobicity in the second, those experimentally derived parameters (pI and R(T)) can be used for the validation of potentially identified peptides. We applied this strategy to a cellular extract of Drosophila Kc167 cells and identified peptides with two different database search engines, namely PHENYX and SEQUEST, with PeptideProphet validation of the SEQUEST results. PHENYX returned 7582 potential peptide identifications and SEQUEST 7629. The SEQUEST results were reduced to 2006 identifications by validation with PeptideProphet. Validation of the PeptideProphet, SEQUEST and PHENYX results by pI and R(T) parameters confirmed 1837 PeptideProphet identifications while in the remainder of the SEQUEST results another 1130 peptides were found to be likely hits. The validation on PHENYX resulted in the fixation of a solid p-value threshold of <1 x 10(-04) that sets by itself the correct identification confidence to >95%, and a final count of 2034 highly confident peptide identifications was achieved after pI and R(T) validation. Although the PeptideProphet and PHENYX datasets have a very high confidence the overlap of common identifications was only at 79.4%, to be explained by the fact that data interpretation was done searching different protein databases with two search engines of different algorithms. The approach used in this study allowed for an automated and improved data validation process for shotgun proteomics projects producing MS/MS peptide identification results of very high confidence.  相似文献   

9.
Two Ca(2+)-dependent endopeptidase activities are involved in proinsulin to insulin conversion: type I cleaves COOH-terminal to proinsulin Arg31-Arg32 (B-chain/C-peptide junction); and type II preferentially cleaves at the Lys64-Arg65 site (C-peptide/A-chain junction). To further understand the mechanism of proinsulin processing, we have investigated types I and II endopeptidase processing of intact proinsulin in parallel to that of the conversion intermediates, des-31,32-proinsulin and des-64,65-proinsulin. The type I processed des-64,65-proinsulin and proinsulin at the same rate. In contrast, the type II endopeptidase processed des-31,32-proinsulin at a much faster rate (> 19-fold; p < 0.001) than it did intact proinsulin. Furthermore, unlabeled proinsulin concentrations required for competitive inhibition of 125I-labeled des-64,65-proinsulin and 125I-proinsulin processing by a purified insulin secretory granule lysate were similar (ID50 = 14-16 microM), whereas inhibition of 125I-labeled des-31,32-proinsulin processing required a higher nonradiolabeled proinsulin concentration (ID50 = 197 microM). Synthetic peptides corresponding to the sequences surrounding Lys64-Arg65 (AC-peptide/substrate) and Arg31-Arg32 (BC-peptide/substrate) of human proinsulin were synthesized for use as specific substrates or competitive inhibitors. Cleavage of the BC-substrate by type I and AC-substrate by type II was COOH-terminal of the dibasic sequence, with similar Ca(2+)-and pH requirements previously observed for proinsulin cleavage. Apparent Km and Vmax for type I processing of the BC-substrate was Km = 20 microM; Vmax = 22.8 pmol/min, and for type II processing of the AC-substrate was Km = 68 microM; Vmax = 97 pmol/min. In competitive inhibition assays, the BC-peptide similarly blocked insulin secretory granule lysate processing of des-64,65-proinsulin and proinsulin (ID50 = 45-55 microM), but did not inhibit des-31,32-proinsulin processing. However, the AC-peptide preferentially inhibited insulin secretory granule lysate processing of des-31,32-proinsulin (ID50 = microM) compared to proinsulin (ID50 = 330 microM), and not des-64,65-proinsulin. We conclude that the type I endopeptidase recognized des-64,65-proinsulin and proinsulin as similar substrates, whereas the type II endopeptidase has a stronger preference for des-31,32-proinsulin compared to intact proinsulin. Furthermore, we suggest that in intact proinsulin there exists a constraint to efficient processing that is relieved following type I processing. Structural flexibility, in addition to the presence of Lys64-Arg65, therefore appears to be important for type II endopeptidase specificity and may provide a molecular basis for a preferential route of proinsulin conversion via des-31,32-proinsulin.  相似文献   

10.
Nonenzymatic glycation of peptides and proteins by d-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low-abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron-transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus.  相似文献   

11.
D Peyton  V Sardana  E Breslow 《Biochemistry》1987,26(6):1518-1525
Perdeuteriated peptides were synthesized that are capable of binding to the hormone binding site of neurophysin but that differ in the position of aromatic residues. The binding of these peptides to bovine neurophysin I and its des-1-8 derivative was studied by proton nuclear magnetic resonance spectroscopy in order to identify protein residues near the binding site through the observation of differential ring current effects on assignable protein resonances. Phenylalanine in position 3 of bound peptides was shown to induce significant ring current shifts in several resonances assignable to the 1-8 sequence, including those of Leu-3 and/or Leu-5, but was without effect on Tyr-49 ring protons. The magnitude of these shifts was dependent on the identity of peptide residue 1. By contrast, the sole demonstrable direct effect of an aromatic residue in position 1 was a downfield shift in Tyr-49 ring protons. Study of peptide binding to des-1-8-neurophysin demonstrated similar conformations of native and des-1-8 complexes except for the environment of Tyr-49, confirmed the peptide-induced ring current shift assignments in native neurophysin, and indicated an effect of binding on Thr-9. These observations are integrated with other results to provide a partial model of neurophysin-peptide complexes that places the ring of Tyr-49 at a distance 5-10 A from residue 1 of bound peptide and that places both the 1-8 sequence and the protein backbone region containing Tyr-49 proximal to each other and to peptide residue 3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A series of glucagon analogues, des-(1-4)-glucagon, des-(5-9)-glucagon, des-(10-15)-glucagon, des-(16-21)-glucagon, des-(22-26)-glucagon and des-(27-29)-glucagon, were prepared by condensation of synthetic fragments and characterized biologically and immunologically. Fully synthetic glucagon was also characterized. The potencies with regard to glucagon receptor binding in purified rat liver plasma membranes were, in decreasing order: synthetic glucagon 108%, des-(1-4)-glucagon 5.7%, des-(27-29)-glucagon 0.92%, des-(5-9)-glucagon 0.47%, des-(10-15)-glucagon 0.0028%, des-(16-21)-glucagon 0.0017% and des-(22-26)-glucagon 0.00060% relative to that of natural porcine glucagon. Des-(27-29)-glucagon was the only analogue that activated the adenylate cyclase in rat liver plasma membranes or stimulated the lipolysis in isolated free fat cells from rat epididymal fat pad. The potencies were 0.16% and 0.20% of that of glucagon, respectively. Des-(1-4)-glucagon was a glucagon antagonist in the adenylate cyclase assay. The immunoreactivities of the glucagon analogues were determined with two commonly used anti-glucagon sera, K 5563 and K 4023, directed towards the C-terminus and some segment in the sequence 2-23, respectively. In the K 5563 assay, des-(27-29)-glucagon and des-(22-26)-glucagon had potencies of 0.0009% and less than 0.09% of that of glucagon, respectively. The remaining analogues had potencies varying from 45% to 141% of that of glucagon. In the K 4023 assay, the analogues showed a non-linear dilution effect. The combined results indicate a partition within the glucagon molecule with regard to receptor binding and adenylate cyclase activation. The region 10-26 appears to be the most important for receptor binding, whereas 1-4 is essential for adenylate cyclase activation. The C-terminal segment 27-29 is important for the maintenance of full receptor binding but non-essential for adenylate cyclase activation.  相似文献   

13.
Electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) present complementary techniques for the fragmentation of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) in addition to the commonly used collisionally activated dissociation (CAD). Both IRMPD and ECD have been shown to be applicable for an efficient sequencing of peptides and proteins, whereas ECD has proven especially valuable for mapping labile posttranslational modifications (PTMs), such as phosphorylations. In this work, we compare the different fragmentation techniques and MS detection in a linear ion trap and the ICR cell with respect to their abilities to efficiently identify and characterize phosphorylated peptides. For optimizing fragmentation parameters, sets of synthetic peptides with molecular weights ranging from approximately 1 to 4 kDa and different levels of phosphorylation were analyzed. The influence of spectrum averaging for obtaining high-quality spectra was investigated. Our results show that the fragmentation methods CAD and ECD allow for a facilitated analysis of phosphopeptides; however, their general applicability for analyzing phosphopeptides has to be evaluated in each specific case with respect to the given analytical task. The major advantage of complementary peptide cleavages by combining different fragmentation methods is the increased amount of information that is obtained during MS/MS analysis of modified peptides. On the basis of the obtained results, we are planning to design LC time-scale compatible, data-dependent MS/MS methods using the different fragmentation techniques in order to improve the identification and characterization of phosphopeptides.  相似文献   

14.
An Z  Chen Y  Koomen JM  Merkler DJ 《Proteomics》2012,12(2):173-182
Amidation is a post-translational modification found at the C-terminus of ~50% of all neuropeptide hormones. Cleavage of the C(α)-N bond of a C-terminal glycine yields the α-amidated peptide in a reaction catalyzed by peptidylglycine α-amidating monooxygenase (PAM). The mass of an α-amidated peptide decreases by 58 Da relative to its precursor. The amino acid sequences of an α-amidated peptide and its precursor differ only by the C-terminal glycine meaning that the peptides exhibit similar RP-HPLC properties and tandem mass spectral (MS/MS) fragmentation patterns. Growth of cultured cells in the presence of a PAM inhibitor ensured the coexistence of α-amidated peptides and their precursors. A strategy was developed for precursor and α-amidated peptide pairing (PAPP): LC-MS/MS data of peptide extracts were scanned for peptide pairs that differed by 58 Da in mass, but had similar RP-HPLC retention times. The resulting peptide pairs were validated by checking for similar fragmentation patterns in their MS/MS data prior to identification by database searching or manual interpretation. This approach significantly reduced the number of spectra requiring interpretation, decreasing the computing time required for database searching and enabling manual interpretation of unidentified spectra. Reported here are the α-amidated peptides identified from AtT-20 cells using the PAPP method.  相似文献   

15.
We have developed a new and sensitive LC-MS platform, Extended Range Proteomic Analysis (ERPA), which is able to achieve very high sequence coverage and comprehensive characterization of post-translational modifications in complex proteins. This new platform provides advantages of both the top-down and bottom-up proteomic approaches by combining (i) digestion of the protein with an enzyme, such as Lys-C, which cuts less frequently than trypsin, leading to on average a higher molecular weight peptide size, (ii) high-performance LC separation of the resulting fragments, (iii) a new data acquisition strategy using the LTQ-FTMS, a hybrid mass spectrometer that couples a linear ion trap with a Fourier transform ion cyclotron resonance (FTICR) cell, for analysis of peptides in the range of 0.5 to 10 kDa, and (iv) new data analysis methods for assigning large peptide structures and determining the site of attachment of post-translational modifications as well as structural features from the accurate precursor mass together with MS(2) and MS(3) fragmentations. The LC retention of the Lys-C fragments is increased, relative to a tryptic digest, due to the generally greater hydrophobicity of the larger peptides, a result that is particularly important for peptides containing hydrophilic modifications such as glycosylation and phosphorylation. Furthermore, additional positively charged arginine and lysine residues in the Lys-C fragments enhance the sensitivity of the post-translationally modified phospho- and glycopeptides by at least 10-fold relative to tryptic fragments. In typical operation, the FTICR cell provides a survey scan with the high mass resolution (> 100 000) and accurate mass (<2 ppm) to characterize the higher charge-state precursor ions of the larger peptides. In parallel, the linear ion trap provides MS(2) and MS(3) fragmentation spectra, with a scan speed sufficiently fast for on-line LC-MS. Together, these data provide multiple means to determine or enhance the confidence of assignment of large or complicated peptide. Using ERPA, we demonstrate >95% sequence coverage in the analysis of two heavily phosphorylated and glycosylated proteins, beta-casein at the 50 fmole level and the epidermal growth factor receptor (EGFR) at the 1 pmole level. In summary, the combination of digestion strategy, high-performance separation, and the hybrid LTQ-FTMS instrument enables comprehensive characterization of large proteins, including posttranslational modifications.  相似文献   

16.
Addition of des-75-76-ubiquitin (ubiquitin lacking its two C-terminal glycine residues) to reticulocyte lysates leads to the inhibition of proteolysis and the formation of conjugates between it and native ubiquitin, as demonstrated by the incorporation of both 125I-labeled des-75-76-ubiquitin and 125I-labeled ubiquitin into these conjugates. Conjugate formation is blocked by methylation of the amino groups of des-75-76-ubiquitin, consistent with the concept that the conjugates represent attachment of the ubiquitin alpha-carboxyl group to amino groups of des-75-76-ubiquitin. The lack of significant direct competition for conjugate formation by typical ubiquitinatable proteolysis substrates or by des-73-76-ubiquitin, together with differences in conjugate formation between des-73-76-ubiquitin and des-75-76-ubiquitin demonstrated earlier, indicates that the enzyme involved recognizes the ubiquitin sequence as a substrate for ubiquitination. Increasing concentrations of native ubiquitin first increase and then reduce the steady state level of conjugates of the des-75-76-protein, the inhibitory effects of high concentrations consistent with competition by native ubiquitin for conjugate formation. Upon fractionation of reticulocyte lysates, a factor essential to the net synthesis of conjugates of des-75-76-ubiquitin was demonstrated to be present in Fraction I and to behave as a protein of molecular weight 38,000. The role in this system of a factor from Fraction I other than ubiquitin indicates that a novel pathway is involved.  相似文献   

17.
Mass spectrometry has played an integral role in the identification of proteins and their post-translational modifications (PTM). However, analysis of some PTMs, such as phosphorylation, sulfonation, and glycosylation, is difficult with collision-activated dissociation (CAD) since the modification is labile and preferentially lost over peptide backbone fragmentation, resulting in little to no peptide sequence information. The presence of multiple basic residues also makes peptides exceptionally difficult to sequence by conventional CAD mass spectrometry. Here we review the utility of electron transfer dissociation (ETD) mass spectrometry for sequence analysis of post-translationally modified and/or highly basic peptides. Phosphorylated, sulfonated, glycosylated, nitrosylated, disulfide bonded, methylated, acetylated, and highly basic peptides have been analyzed by CAD and ETD mass spectrometry. CAD fragmentation typically produced spectra showing limited peptide backbone fragmentation. However, when these peptides were fragmented using ETD, peptide backbone fragmentation produced a complete or almost complete series of ions and thus extensive peptide sequence information. In addition, labile PTMs remained intact. These examples illustrate the utility of ETD as an advantageous tool in proteomic research by readily identifying peptides resistant to analysis by CAD. A further benefit is the ability to analyze larger, non-tryptic peptides, allowing for the detection of multiple PTMs within the context of one another.  相似文献   

18.
Rat intermediate pituitary cells in primary culture display a time-dependent loss of the ability to produce COOH-terminally alpha-amidated alpha MSH (Glembotski, C.C., Eipper, B.A., and Mains, R.E. (1983) J. Biol. Chem. 258, 7299-7304). Instead of des-, mono-, and diacetyl-adrenocorticotropic hormone(ACTH) (1-13)NH2, the cells produce des-, mono-, and diacetyl-ACTH(1-14)OH. Since the pituitary secretory granule-associated alpha-amidation enzyme requires copper and ascorbic acid for optimal activity (Eipper, B.A., Mains, R.E., and Glembotski, C. C. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5144-5148), these cofactors were added to cultures of intermediate pituitary cells in an attempt to reverse the loss of peptide alpha-amidation ability. When the cultures were supplemented with up to 100 microM cooper (II) there was very little change in the ability to alpha-amidate alpha-melanotropin. Ascorbic acid at concentrations of up to 500 microM resulted in a dramatic increase in the ability of the cells to form the alpha-amidated peptide. Various combinations of ascorbic acid and copper additions indicated that a relatively short exposure (hours) to ascorbic acid produced the maximal response. Ascorbic acid displayed a dose-dependent effect on the alpha-amidation ability with a half-optimal concentration of about 25 microM. Pulse-chase labeling experiments demonstrated the ascorbic acid-dependent conversion of labeled ACTH(1-14)OH-related peptides to ACTH(1-13)NH2-related peptides. These results correlate with the ascorbic acid requirement of the pituitary alpha-amidation enzyme and demonstrate that the direct precursors to ACTH(1-13)NH2-related peptides are ACTH(1-14)OH-related peptides. Combined with our previous data, the present studies support the notion that a wide range of neuro- and endocrine peptides become alpha-amidated in a similar ascorbic acid-dependent manner.  相似文献   

19.
Experimental determination of fluxes by (13)C-tracers relies on detection of (13)C-patterns in metabolites or by-products. In the field of (13)C metabolic flux analysis, the most recent developments point toward recording labeling patterns by liquid chromatography (LC)-mass spectrometry (MS)/MS directly in intermediates in central carbon metabolism (CCM) to increase temporal resolution. Surprisingly, the flux studies published so far with LC-MS measurements were based on intact metabolic intermediates-thus neglected the potential benefits of using positional information to improve flux estimation. For the first time, we exploit collisional fragmentation to obtain more fine-grained (13)C-data on intermediates of CCM and investigate their impact in (13)C metabolic flux analysis. For the case study of Bacillus subtilis grown in mineral medium with (13)C-labeled glucose, we compare the flux estimates obtained by iterative isotopologue balancing of (13)C-data obtained either by LC-MS/MS for solely intact intermediates or LC-MS/MS for intact and fragmented intermediates of CCM. We show that with LC-MS/MS data, fragment information leads to more precise estimates of fluxes in pentose phosphate pathway, glycolysis, and to the tricarboxylic acid cycle. Additionally, we present an efficient analytical strategy to rapidly acquire large sets of (13)C-patterns by tandem MS, and an in-depth analysis of the collisional fragmentation of primary intermediates. In the future, this catalogue will enable comprehensive in silico calculability analyses to identify the most sensitive measurements and direct experimental design.  相似文献   

20.
Post-translational modifications are used by cells to control the functions of proteins. Phosducin-like protein (PhLP) is a regulator of G-protein signaling that is post-translationally modified via phosphorylation. Phosphorylation of PhLP initiates its degradation by the 26S proteasome in serum-stimulated cells. In this report, we show that PhLP is phosphorylated in serum-stimulated Chinese hamster ovary (CHO) cells. Through the use of tandem mass spectrometry (MS/MS), the specific amino acids phosphorylated can be identified. A PhLP-myc-His construct was purified and phosphorylated by serum-stimulated CHO extract. The resulting protein was digested with trypsin and the peptides were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Automated collison-induced dissociation data acquisition was compared with LC-MS/MS of manually chosen parents. In general, LC-MS/MS is superior for parent ions chosen manually, with the notable exception that automated fragmentation employs dynamic collision energy, which can result in higher quality collison-induced dissociation. Using the LC-MS/MS methods, four phosphorylation sites on PhLP were positively identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号