首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 251 毫秒
1.
Seven trials conducted over four years on sites naturally infested with the white potato cyst nematode established that potato clones bred for resistance to Globodera pallida allowed significantly less nematode multiplication than conventional cultivars under field conditions. Nematode multiplication was inversely related to initial infestation level. The nematicide, aldicarb, significantly reduced nematode multiplication. However, nematode multiplication on nematicide treated susceptible cultivars was greater than on untreated partially resistant clones, indicating that resistance may offer more effective control of G. pallida than chemical treatment. Integration of host plant resistance and nematicide treatment is discussed.  相似文献   

2.
The control of potato cyst nematode (PCN) by less than approved amounts of nematicide combined with partially resistant potato clones was studied in a series of field experiments. On a site heavily infested with Globodera pallida only the most resistant clone (12380ac2) decreased the population density in untreated soil. With aldicarb at its full approved rate (3·36 kg ha-1) numbers of PCN were decreased under all the genotypes, including the non-resistant Maris Piper. Aldicarb at 1·68 kg ha-1significantly decreased populations on all clones except 12380ac2. Aldicarb at 0·84 kg ha-1still significantly decreased population densities and multiplication rates of G. pallida on two clones with intermediate resistance (12243acl and 11233ab22). At two G. rostochiensis sites with light infestations nematode multiplication rates were greater and the control given by aldicarb and partially resistant genotypes of potato was not as great as that at the site with G. pallida. Tuber yields were not increased by the application of aldicarb at the G. rostochiensis infested sites. However, at the site heavily infested with G. pallida the yield of the most intolerant genotype (12380ac2) was increased seven-fold by the full rate of aldicarb (3·36 kg ha-1) and four-fold by the quarter rate (0·84 kg ha-1)-Yield of the most tolerant genotype (12243acl) was unaffected by the application of aldicarb.  相似文献   

3.
Three field experiments were made to determine the effectiveness of small-plot trials in detecting differences between potato cultivars/clones in their tolerance of damage by potato cyst-nematodes. A nematicide (aldicarb) was applied at three rates to decrease nematode damage. The largest rate of aldicarb increased tuber yields most but the relationship between yield response and nematicide rate was not linear. The yield increases of the cultivars and clones differed, indicating that they have different degrees of tolerance of potato cyst nematodes. The results were analysed in several ways and the untreated yield as a proportion of the treated provided the best means of expressing and comparing tolerance; but whichever method was used the tolerance rankings of the cultivars and clones were similar. At two sites infested with Globodera rostochiensis, the rankings of the 10 cultivars and clones were similar but at a third site, heavily infested with G. pallida, they were different. Aldicarb decreased the nematode population density after harvest at the G. pallida site but was less effective at the G. rostochiensis sites, which were less heavily infested. Growing resistant or partially resistant potatoes usually prevented nematode increase, and the more resistant cultivars and clones decreased population densities markedly.  相似文献   

4.
Six potato cultivars with different levels of resistance to the white potato cyst nematode (PCN) Globodera pallida Pa2 were grown for three seasons in field plots to which G. pallida Pa2 cysts had been introduced earlier. There were two planting times, corresponding to early and maincrop commercial planting times, and two initial PCN population densities, high and low. The effect of cultivar on PCN population density was far greater than the effect of planting time or initial nematode population. The final PCN populations for the cultivars Ilam Hardy, Wha, 4696A(2), Sovereign, D40/6 and V390 were 151, 74, 27, 1.4, 0.2 and 0.06 eggs per g of soil respectively. It is concluded that resistant potato cultivars can be very effective in controlling G. pallida Pa2 in the field.  相似文献   

5.
Eight trials were conducted in commercial potato fields infested with the white potato cyst nematode (wPCN, Globodera pallida) and one in a field infested with the yellow PCN (yPCN, Globodera rostochiensis). Our aims were to produce data to validate and refine a computer‐based program (The Model) for the long‐term management of PCN, to determine nematicide effectiveness and to assess rates of PCN population decline between potato crops. Prior to planting, each farmer applied an overall nematicide treatment to his field, except for ten untreated plots that were widely spaced to encompass a range of PCN population densities. Each untreated plot was paired with a similar plot in the adjacent treated area and all plots were intensively sampled for PCN population densities at planting (Pi) and again at harvest (Pf) when tuber yields were determined. Four trials were re‐sampled 2–4 years later to determine PCN population decline rates. Regressions that form the basis of ‘The Model’ and described the relationship between Pi and tuber yield and PCN population density at harvest were fitted to the results from both the untreated and nematicide treated plots. These regressions also enabled us to estimate the yield potential at each site in the absence of PCN and showed that nematicide treatment generally did not increase yield potential and that both tuber yield and PCN multiplication decreased with increasing Pi. However, there were major differences between sites and cultivars. When untreated, the yield of cv. Maris Piper was hardly affected in a highly organic soil with Pi > 200 eggs g?1 whereas the yield of partially resistant cv. Santé was decreased from a potential of c. 60 t ha?1 to c. 20 t ha?1 in a light silt with Pi = 20 egg g?1 soil. Similarly, untreated wPCN multiplication rates at a low Pi ranged from 46‐fold to >100‐fold. Nematicide effectiveness was estimated from the regressions and, at several sites, yield was decreased despite nematicide treatment. Control of wPCN multiplication was even poorer. In only two of seven trials planted with susceptible cultivars was more than 50% control achieved – maximum populations in treated plots usually exceeded 250 eggs g?1. Partially resistant Santé decreased the multiplication rate of wPCN in the two trials where it was planted. An alternative analysis using Genstat indicated that The Model tended to underestimate the maximum multiplication rate and overestimate the maximum population density. When four sites were re‐sampled 2–4 years after harvest the populations of wPCN had declined by between 15% and 33.5% per annum with a mean of 26% per annum. Modelling indicated that rotations longer than 8 years were required to control wPCN unless other effective control measures, such as growing a partially resistant cultivar, were used.  相似文献   

6.
The two species of the potato cyst nematodes (PCN) Globodera pallida and G rostochiensis are the most problematic pests of the potato crop in the UK. There are no commercially available cultivars with full resistance to G. pallida and both crop rotation and granular nematicides are less effective at controlling this species than G. rostochiensis. In situations of very high PCN levels it may be possible to reduce populations and yield losses by using an autumn application of the soil fumigant 1,3-dichloropropene (1,3-D) followed by a spring application of a granular nematicide. Two field experiments were done to look at the integration of methods for the control of PCN. The Common Field experiment (G. rostochiensis infested) compared the use of 1,3-D with the granular nematicides aldicarb, oxamyl and fosthiazate when growing the susceptible cv. Estima. The Four Gates experiment (infested with both PCN species but mainly G rostochiensis) compared the performance of cv. Santé (partially resistant to G. pallida, fully resistant to G. rostochiensis) with that of the susceptible cv. Estima when treated with 1,3-D and oxamyl at full and half-rates. The results of the experiments show that an integrated approach to nematode control on heavily infested sites, including granular and fumigant nematicides and cultivar resistance, can lead to significant decreases in nematode population densities and reduce yield losses. An economic evaluation of the experiments modelled the gross margins from the different nematicide treatments. In Common Field, the highest gross margins were achieved with the combined use of fumigant and granular nematicides. In Four Gates, there was a clear economic benefit for both cultivars from the use of 1,3-D. In this experiment, oxamyl was of economic value to Estima but not to Sante and full-rate oxamyl was of more benefit than half-rate to Estima.  相似文献   

7.
In field trials Cara, Brio, Maris Piper and Pentland Javelin were consistently more tolerant of damage by Globodera rostochiensis yielding more than Corsair, Pentland Dell, Maris Anchor and Maris Peer, in untreated, heavily infested soil and giving the smallest increases to nematicide treatment. No yield or growth differences were found between plants in untreated and nematicide treated plots at a nematode-free site. The most tolerant cultivars all had a gene (H1) for resistance to G. rostochiensis derived from Solanum tuberosum ssp. andigena and in soil infested with G. pallida the tolerance of at least one resistant cultivar (Maris Piper) appeared to be lessened. However, some resistant cultivars were comparatively intolerant, even to G. rostochiensis. Early cultivars were generally less tolerant than late maturing cultivars but there were exceptions. Amongst cultivars with resistance derived from Solanum vernei the early cultivar Guardian was more tolerant than the main crop cultivar Corsair. The effect on the yield of several cultivars of a range of densities of G. rostochiensis, produced either by applying different rates of a nematicide or by cropping in the previous year, was examined at two sites. The results indicated that the slope of the regression for yield in relation to nematode density was less for tolerant than intolerant cultivars. At sites infested with G. rostochiensis Maris Piper was found to be consistently more tolerant than Pentland Crown.  相似文献   

8.
Field experiments at Harper Adams, Shropshire and Wisbech, Cambridgeshire investigated the effect of nematicide incorporation and seed tuber planting depth on the yield of the potato (Solamum tuberosum L.) cultivars Estima and Maris Piper and the population control of the potato cyst nematodes Globodera rostochiensis Woll. (Skarbilovich) and G. pallida (Stone). The nematicide fosthiazate was applied at 3 kg?1 ha and either not incorporated, or incorporated to 20 cm or 35 cm. Potatoes were mechanically planted to three depths; approximately 10 cm, 15 cm and 25 cm. Incorporation to 20 cm with tubers planted at a depth of 10 cm or 15 cm, reduced root invasion compared with the other treatments. Incorporating nematicide to 20 cm also gave consistently higher ware yields and better nematode control than the other incorporation methods, which were not significantly different to the control. However, ware yield and nematode multiplication rate were not significantly affected by planting depth.  相似文献   

9.
The concept of using a range of Solanaceae potato clones as trap crops for potato cyst nematode (PCN) management was investigated. A series of field trials were undertaken from 1999 to 2002 that evaluated 10 clones of either wild Solanum potato species, breeder’s hybrid lines or commercial cultivars. All had high resistance to all known PCN pathotypes (both Globodera rostochiensis and Globodera pallida) and the ability to stimulate high levels of PCN hatch. Investigations showed potential for the development of some clones as a means of reducing high PCN field population levels and for use by organic potato producers.  相似文献   

10.
A range of potato cultivars and clones was grown at three sites infested with Globodera pallida in each of four years (1983 – 1986). Comparison of yields from nematicide treated plots with those of untreated plots provided estimates of yield losses due to G. pallida. The proportional yield losses were calculated for each genotype at each site as a measure of nematode tolerance. There were significant differences between genotypes with regard to tolerance of damage by G. pallida. There were also significant interactions between the different genotypes and the sites and years, but the interactions between years and genotypes represented only a small proportion of the observed variation. The interactions between sites and years indicate that not all of the genotypes behaved consistently between sites and years. The extent of yield losses caused by the nematodes varied significantly between sites. The implications of these results are discussed in relation to potato breeding programmes and assessing resistance and tolerance to G. pallida.  相似文献   

11.
Studies of the yield losses caused by potato cyst nematodes (PCN) in Britain are reviewed. The main conclusions either drawn from or supported by the literature, are:- 1) The models/equations used to relate yield losses to pre-planting densities of PCN are not entirely satisfactory. 2) There is considerable variation between sites in the damage caused by PCN and hence the yield response to nematicide treatment cannot be reliably predicted. 3) Oximecarbamate nematicides, if well applied and if other damaging pests are absent, will prevent most of the loss at infested sites but do not increase yields at most uninfested sites. 4) PCN decreases yields by reducing the effectiveness of the root system, and hence leaf area duration and the amount of light intercepted by the crop canopy: in some circumstances PCN may also decrease the efficiency of assimilation. 5) Several factors interact either to increase or to decrease the damage caused by PCN; some of the more important are soil type, interactions with micro-organisms, differences in husbandry, differences between cultivars in their tolerance of damage, the weather and differences in yield potential between sites. 6) Both the yield losses caused by Globodera pallida and the amounts of nematicide used may be decreased by planting tolerant and partially resistant cultivars. New results are used to show that yield losses may be decreased by applying extra fertiliser and that low rates of nematicides may be adequate to prevent damage to tolerant cultivars. Further research may lead to an improved basis for advice relating to the control of PCN and the damage it causes.  相似文献   

12.
Six potato trials, two in each of three years, were conducted in collaboration with the Agricultural Development and Advisory Service (ADAS) at sites infested with potato cyst nematodes (G. pallida Pa 2/3). The trials were part of a selective screen to identify PCN tolerant and intolerant clones with each trial consisting of four blocks divided into nematicide treated and untreated sub-blocks. A range of partially resistant and susceptible material was assessed for yield losses due to PCN damage to the roots and for the effect on the foliage by comparison between the nematicide treated and untreated areas. The relationships between the foliage symptoms, untreated yields, treated yields, proportional yield loss, initial PCN population and the post-harvest PCN population levels are examined. Significant correlation coefficients were obtained between foliage symptoms and yield of clones in PCN infected soil and also between foliage symptoms with percentage yield loss due to PCN infestation. The conclusions were that the assessment of PCN damage to foliage vigour/development can contribute positively to a more accurate identification of tolerant or intolerant potato genotypes.  相似文献   

13.
Inoculation of microplants of potato cv. Golden Wonder with Vaminoc, a mycorrhizal inoculum of three arbuscular mycorrhizal fungi (Glomus spp.), resulted in an increase in in‐sand hatch of Globodera pallida, but not G. rostochiensis, within 2 weeks. By this time, mycorrhized plants also supported a larger number of feeding nematodes of both PCN species (50% higher for G. rostochiensis) than did non‐mycorrhized plants, with a higher proportion of the G. pallida population being fertilised females than for G. rostochiensis. After 12 weeks, the multiplication rate of G. rostochiensis on mycorrhized plants was significantly greater than on non‐mycorrhized plants, whereas no such difference was observed for G. pallida. The principal component of PCN multiplication affected by mycorrhization was increased cyst number per plant from 6 to 12 weeks. Over this period, there was no increase in cyst number per plant for either PCN species on non‐mycorrhized plants, whereas the value increased on mycorrhized plants for both G. rostochiensis (by almost 200%) and G. pallida (57%). Mycorrhization resulted in significant increases in the root and shoot dry weights of plants grown in the absence of PCN. Although mycorrhized plants carried a larger PCN burden than non‐mycorrhized plants when grown on PCN‐infested medium, as a result of the increased PCN multiplication rate, they produced larger root systems than did nonmycorrhized plants, suggesting increased tolerance to PCN of the mycorrhized plants, particularly to G. rostochiensis. Of morphological characters investigated in the absence of PCN, only stem height (increased) was significantly affected by mycorrhization. Colonisation by mycorrhizal fungi resulted in increased tuber yield both in the absence (significant increase) and presence (non significant) of PCN, as a result of increased tuber number per plant. These results are discussed in the light of the possible use of AMF as part of an integrated PCN management plan.  相似文献   

14.
The effect of a pre-planting application of oxamyl on the yields of six potato cultivars was studied in co-operative field trials in 1981. Two sites were ‘uninfested’ with potato cyst nematodes (PCN), two were lightly infested (<25 eggs/g soil) and six were moderately to heavily infested (three with Globodera rostochiensis and three with G. pallida). At the uninfested and lightly infested sites oxamyl had little effect on mid-season haulm weights or on final tuber yields. At sites moderately to heavily infested with G. rostochiensis the haulm growth of all cultivars tended to be increased by a similar amount on plots treated with oxamyl, Pentland Dell being least responsive. Yield was increased by different amounts, the increases being least for cvs Cara and Maris Piper and most for Corsair and Pentland Dell. At the sites moderately to heavily infested with G. pallida Cara was again tolerant, its yield being increased little by oxamyl compared with the other cultivars. Maris Piper gave the largest yield increase. Final populations of PCN on non-resistant cultivars were reduced by oxamyl at some sites but not at others. Resistant cultivars also decreased the final numbers of PCN at most sites. Two cultivars derived from Solanum vernei with different degrees of resistance, appeared to be almost equally effective in controlling G. rostochiensis and G. pallida.  相似文献   

15.
This is the first report of the successful use of Pochonia chlamydosporia as a biological control agent against potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) in potato crops grown under commercial field conditions and represents an important step in the development of biological control for PCN. Two field experiments were established in consecutive years (2006 and 2007) at different field sites in Shropshire, England. Treatments comprised of (1) untreated control, (2) P. chlamydosporia, (3) P. chlamydosporia with the nematicide fosthiazate and (4) fosthiazate alone. In both experiments, significant reductions in the nematode multiplication rate (Pf/Pi) for P. chlamydosporia treated plots were observed (48% and 51% control, respectively). The P. chlamydosporia treatment did not differ significantly from both fosthiazate treatments in terms of Pf/Pi in spite of the trend towards increased control particularly in Experiment 1. P. chlamydosporia therefore provided similar levels of nematode population control as fosthiazate. The combined treatment did not provide any additional reduction in Pf/Pi but demonstrated that P. chlamydosporia was compatible with fosthiazate. Over the different developmental stages of the juvenile nematodes, there was evidence of parasitism of adult females on the plant root by P. chlamydosporia. Root colonization by P. chlamydosporia was higher in the P. chlamydosporia treatment due to increased levels of nematodes in plant roots. Results from both experiments demonstrated the efficacy of P. chlamydosporia as a biological control agent of PCN and indicate its potential for use as part of an integrated pest management strategy.  相似文献   

16.
 Broad-spectrum resistance in potato to the potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida is commonly regarded as a polygenically inherited trait. Yet, by use of QTL analysis and a selected set of PCN populations, resistance to both PCN species could be ascribed to the action of locus Grp1. Grp1 confers major resistance to G. rostochiensis line Ro5-22 and G. pallida population Pa2-D383 and partial resistance to G. pallida population Pa3-Rookmaker. Grp1 was mapped on chromosome 5 using previously characterized AFLP markers. Cleaved amplified polymorphic sequence (CAPS) markers available for RFLP loci GP21 and GP179 revealed that Grp1 maps on a genomic region harboring other resistance factors to viral, fungal and nematodal pathogens. The present data indicate that Grp1 is a compound locus which contains multiple genes involved in PCN resistance. Received: 10 September 1997 / Accepted: 6 October 1997  相似文献   

17.
Over the last 30 years, there has been an epidemic of the white potato cyst nematode (wPCN, Globodera pallida). It has progressively replaced the yellow species (yPCN, G. rostochiensis) throughout most of England and Wales and is now a widespread problem. As damaging populations of wPCN are enormous (>109 eggs ha?1), several crops of potato cultivars resistant only to yPCN were required to produce this change. The threat it poses is reflected in an increase in the numbers of soil samples being tested and in nematicide use, which has increased to > 25 000 ha of potatoes being treated annually. Computer modelling shows that current management of wPCN is mostly ineffective and populations will continue to increase. The multiplication rate of wPCN is inversely related to its population density at planting and, because of this, modelling shows that sufficient eggs are likely to survive to enable large populations of wPCN to “rebound” following nematicide treatment. This is supported by recent trial results showing that wPCN population increase was almost as great in nematicides‐treated plots as in the untreated. Modelling also showed that current rotations (typically potatoes once every 5 or 6 years) are too short to prevent wPCN populations from progressively increasing, even when used in conjunction with a nematicide. Similarly, except with avirulent populations, the partially resistant cultivars currently available will not prevent wPCN from increasing. However, as the effectiveness of partially resistant cultivars is independent of population density, they can be very effective when integrated with a nematicide. Unfortunately, only c. 8% of the potato area is planted with partially resistant cultivars, and much of that is in land not known to be infested with wPCN. Consequently, the current epidemic of wPCN is likely to become progressively more serious. However, many farmers are failing to recognise and respond to this threat until it is too late because of the slow rate of increase of wPCN, the difficulties of detecting small populations and the costs of nematicides. To respond to the current epidemic of wPCN, the greatest priority is to have available an increased number of commercially‐attractive partially resistant cultivars.  相似文献   

18.
Non-resistant but tolerant cv. Cara and non-resistant but relatively intolerant cv. Pentland Dell were grown in split plots encompassing a range of population densities of potato cyst nematode, Globodera pallida. Light interception and its efficiency of conversion were estimated by regular ground cover measurements and plant harvests. It was concluded that increasing levels of infestation with G. pallida only slightly decreased the efficiency of utilisation of intercepted radiation. Heavy infestation of G. pallida initially decreased the top growth and light interception of both cultivars by similar proportions, but in later harvests, this adverse effect markedly decreased for Cara whereas it slightly increased for Pentland Dell. This difference was due to the heavily infested Cara eventually achieving and maintaining 100% ground cover whereas the equivalent Pentland Dell never exceeded 75% ground cover. Consequently, final tuber yields were decreased much more for Pentland Dell than for Cara though the decreases in tuber yield were less than those for top growth. The importance of nematode effects on top growth, and hence on light interception, with regard to both yield losses and tolerance differences, were clearly demonstrated. Both linear and logarithmic models were used to describe the relationship between the initial population density of G. pallida and yield, and the implications of differences in tolerance on the parameters in the logarithmic model are discussed.  相似文献   

19.
Trials relating response to nematicide to potato cyst nematode density were conducted initially in the West Midlands and later in other Regions. Thirteen trials, only three of which were within the intensive potato growing areas, conformed to a general pattern with yield losses being largely recouped by nematicide treatment. Five trials, four within the intensive areas, gave no correlation between potato yield and nematode density and an unpredictable response to nematicide. The control of the nematode appeared to be poorer in the latter trials but other factors affecting yield and nematode multiplication may have been involved. It is speculated the main factor might be interaction with fungal organisms e.g. Rhizoctonia or Verticillium. Evidence is presented to show that on several trials the nematicide has an effect other than by controlling potato cyst nematodes. Yield losses caused by potato cyst nematodes are more variable than previous work indicated, probably due to varietal, seasonal or environmental influences.  相似文献   

20.
A new technique is described for establishing different numbers of the potato cyst-nematode Globodera rostochiensis in field soil, which leaves the soil homogeneous in nutrient status. Field plots established in this way were used to compare yield losses in four potato cultivars (Maris Piper, Pentland Crown, Pentland Dell and Désirée) associated with different numbers of G. rostochiensis. Over the range of 7.4 to 148.4 eggs g-1 soil at planting, yield losses were 18.7% (Maris Piper), 53.2% (Désirée), 55.7% (Pentland Crown) and 63.5% (Pentland Dell). Similar results were obtained in another experiment on the same field in a different year using only lightly and heavily infested plots. Treating the seedbed soil with oxamyl before planting prevented significant injury to potatoes by G. rostochiensis but increased the yield of Pentland Dell and perhaps Désirée (but not Maris Piper or Pentland Crown) more than expected from nematode control alone. Treating heavily infested soil with such a nematicide cannot therefore be recommended as part of a valid procedure for establishing lightly and heavily infested plots for comparing tolerances of attack by potato cyst-nematodes in a range of potato genotypes. In peaty loam soils moderately or heavily infested with G. pallida, oxamyl at 5.6 kg a.i. ha-1 incorporated into the seedbed before potatoes were planted generally increased tuber yields, though the effects varied considerably with the cultivar grown. Increase of G. pallida in these soils was controlled better by growing potatoes bred for resistance to it (ZB 35 – 29, Caxton, Santé, Morag, 11233 ab 22, Fingal, A27/23, Cromwell). Increase of G. pallida on susceptible cultivars varied greatly and Romano increased G. pallida no more than the resistant Morag. G. pallida is probably controlled best in peaty loam by growing a resistant cultivar in soil treated with a granular (non-fumigant) nematicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号