首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Evolution and divergence among, species within the genusLathyrus have involved an approximately fivefold increase in the amounts of nuclear DNA. Most species inLathyrus are diploids with the same chromosome number, 2n=14. Significant changes in the amounts of repetitive sequences have accounted for much of the evolutionary DNA variation between species. Seven diploidLathyrus species with a twofold variation in nuclear DNA amounts between them were investigated. Using higher derivative analysis of the thermal denaturation profiles of the reassociated repetitive DNA, the reiteration frequency and divergence of repetitive families were compared. Much variation in the reiteration frequency was observed within and between species. In species with larger 2C DNA amounts repetitive families had on average greater amounts of DNA. Despite the massive differences in DNA amounts, six species were consistently similar in the number of repetitive families in their genomes, and they showed a similar pattern in base sequence divergence. In terms of base sequence relationships the repetitive families appeared to be heterogeneous. The evolutionary significance is discussed.  相似文献   

2.
The heterochromatin of the chromosomes of Drosophila gunche consists mainly of a satellite DNA composed of multiple, tandemly arranged copies of a 290 b p basic sequence. Five clones containing one or two copies of the basic unit were sequenced. As expected from CsCl density centrifugation and AT specific staining of mitotic chromosomes the sequence is AT rich. The average nucleotid variability between the cloned sequences is 11.6%. In situ hybridization on the mitotic chromosomes revealed, that this satellite DNA is present in the centromeric regions of all chromosomes but the Y. The nucleotide variability between copies of different tandem clusters seems to be higher than between members of the same cluster. The copy number of the sequence in the haploid genome was estimated to be approximately 80000. The sequence is species specific and is not present in the genome of sibling species D. subobscura and D. madeiren-sis. The evolutionary origin of the satellite DNA and its possible role in species formation is discussed.  相似文献   

3.
Centromeric repetitive DNA sequences in the genus Brassica   总被引:1,自引:0,他引:1  
Representatives of two major repetitive DNA sequence families from the diploid Brassica species B. campestris and B. oleracea were isolated, sequenced and localized to chromosomes by in situ hybridization. Both sequences were located near the centromeres of many chromosome pairs in both diploid species, but major sites of the two probes were all on different chromosome pairs. Such chromosome specificity is unusual for plant paracentromeric repetitive DNA. Reduction of stringency of hybridization gave centromeric hybridization sites on more chromosomes, indicating that there are divergent sequences present on other chromosomes. In tetraploid species derived from the diploids, the number of hybridization sites was different from the sum of the diploid ancestors, and some chromosomes had both sequences, indicating relatively rapid homogenization and copy number evolution since the origin of the tetraploid species.  相似文献   

4.
 In a search for repetitive DNA sequences in the sugar beet genome, two sequences with repeat unit lengths of 143 and 434 bp were isolated and characterized. The pSV family showed an unusual conservation of restriction sites reflecting homogenization of the analyzed repeats. Members of the family are organized as tandem repeats as revealed by PCR and sequencing of dimeric units. The pSV satellite occurs in large intercalary arrays which are present on all chromosome arms of sugar beet. The pSV sequence family is present in different abundance in the sections Beta, Corollinae and Nanae but is not detectable by Southern hybridization in the section Procumbentes. The pDRV family is characterized by an interspersed genomic organization. The sequence is detectable in all sections of the genus and is amplified in species of the section Beta but was also detected, although at lower abundance, in the remaining three sections. Fluorescent in situ hybridization has shown that the pDRV sequence family is dispersed over all chromosomes of the sugar beet complement with some regions of clustering and centromeric depletion. Received: 18 March 1998 / Accepted: 31 March 1998  相似文献   

5.
Summary We isolated three different repetitive DNA sequences from B. campestris and determined their nucleotide sequences. In order to analyze organization of these repetitive sequences in Brassica, Southern blot hybridization and in situ hybridization with metaphase chromosomes were performed. The sequence cloned in the plasmid pCS1 represented a middle repetitive sequence present only in B. campestris and not detected in closely related B. Oleracea. This sequence was localized at centromeric regions of six specific chromosomes of B. campestris. The second plasmid, pBT4, contained a part of the 25S ribosomal RNA gene, and its copy number was estimated to be 1,590 and 1,300 per haploid genome for B. campestris and B. oleracea, respectively. In situ hybridization with this sequence showed a clear signal at the NOR region found in the second largest chromosome of B. Campestris. The third plasmid, pBT11, contained a 175-bp insert that belongs to a major family of tandem repeats found in all the Brassica species. This sequence was detected at centromeric regions of all the B. campestris chromosomes. Our study indicates that in situ hybridization with various types of repetitive sequences should give important information on the evolution of repetitive DNA in Brassica species.  相似文献   

6.
Plasticity of the tobacco genome was studied by testing the DNAs of protoplast-derived regenerants with three different repetitive DNA sequences by the method of quantitative DNA/DNA hybridizations. A large population of 91 regenerants belonging to 35 different protoclones was analysed and a high degree of heterogeneity in the contents of the different DNA repeats was detected. The contents of middle repetitive sequences of two types were more stable or changed in the same direction, while the highly repetitive sequence varied independently and displayed a significant reduction in comparison with the two other sequences. Comparing the variation within the subpopulations of plants of the same clonal origin and the variation among the protoclones led to a conclusion that the pre-existing DNA variability in the starting plant material and/or thein vitro stress during the very early stages of protoclone regeneration played a decisive role in the formation of modified genomes in regenerants.  相似文献   

7.
We have examined aspects of the interaction of cycled microtubule protein preparations with 35S-labeled mouse DNA tracer in a competition system with unlabelled competitor E. coli or mouse DNA. The nitrocellulose filter binding assay was used to measure interaction by scintillation counting. DNA molecular weight affected the levels of filter retained 35S-labelled mouse tracer DNA. Filter retention levels increased if 35S-labelled mouse DNA tracer size was increased, and the filter binding level decreased if competitor DNA size was increased. There was a sizeable, reproducible difference in the 35S-labelled mouse DNA tracer binding level of about 1% when E. coli or mouse DNA competitors were compared. Mouse DNA more effectively competed with 35S-labelled mouse DNA for microtubule protein binding than did E. coli DNA, suggesting that a small class of higher-organism DNA sequences interacts very strongly with microtubule protein. From other studies we know this to be the MAP fraction (Marx, K.A. and Denial, T. (1984) in The Molecular Basis of Cancer (Rein, R., ed.), Alan R. Liss, New York, in the press; and Villasante, E., Corces, V.G., Manso-Martinez, R. and Avila, J. (1981) Nucleic Acids Res. 9, 895–908). We find that this difference in competitor DNA strength is qualitatively similar under high-stringency conditions (0.5 M NaCl, high competitor [DNA]) we developed for examining high-affinity complexes. Under high-stringency conditions we isolated 1.2% and 0.6% of 35S-labelled mouse DNA at 4200 and 350 bp respective sizes as nitrocellulose filter bound DNA-protein complexes. At both molecular weights these high-affinity DNA sequences, isolated from the filters, were shown to be significantly enriched in repetitive DNA sequences by S1 nuclease solution reassociation kinetics. The kinetics are consistent with about a 4-fold mouse satellite DNA enrichment as well as enrichment in other repetitious DNA sequence classes. The high molecular weight filter-bound DNA samples were sedimented to equilibrium in CsCl buoyant density gradients and found to contain primarily mouse satellite DNA density sequences (1.691 g/cm3) with some minor fractions at other density positions (1.670, 1.682, 1.705, 1.740, 1.760 g/cm3) similar to those observed by our laboratory in previous investigations of micrococcal nuclease-resistant chromatin (Marx, K.A. (1977) Biochem. Biophys. Res. Commun. 78, 777–784). That the high-affinity microtubule-bound DNA was some 3–5-fold enriched in mouse satellite sequences was demonstrated by its characteristic BstNI restriction enzyme cleavage pattern  相似文献   

8.
The properties of DNA segments containing foldback elements were studied after their selection from a ‘random’ recombinant library of Physarum polycephalum nuclear DNA sequences, cloned using the plasmid vector pBR322. Hybridisation of in vitro labelled recombinant plasmids to Southern blots of genomic restriction fragments demonstrated that each cloned segment contained repetitive elements located at several hundred sites in the genome. Two of the DNA clones generated hybridisation patterns which suggested that they contain repetitive elements with internal cleavage sites for the restriction endonuclease HaeIII. Cross-hybridisation of all combinations of the cloned sequences showed that most contain different arrangements of repetitive elements derived from different sequence families. The results are consistent with a model proposed previously on the basis of studies on total nuclear DNA, for the organisation of sequences closely associated with foldback elements in the Physarum genome  相似文献   

9.
 Three repetitive DNA sequences were isolated from a genomic DNA library of the ornamental Alstroemeria aurea Graham. Two repeats, A001-I and A001-II, were quite homologous and highly A. aurea-specific. A001-I was a 217-bp sequence with several telomeric TTTAGGG repeats at the 5′ end and a unique sequence of 98 bp at the other end. The third repeat, A001-IV, was a 840-bp sequence which contained two sub-sequences of 56 and 74 bp respectively, previously found in chloroplast (cp) DNA of tobacco and spinach and to a lesser extent in the cpDNA of maize and rice. Repeat A001-IV was not species-specific and its hybridization signal was weaker than the other repeats. Fluorescence in situ hybridization (FISH) revealed the A. aurea-specific repeats to be located in the heterochromatic regions of all A. aurea chromosomes. The differences in FISH pattern make them useful tools for karyotype analysis. The non-species-specific sequence A001-IV gave a dispersed signal over all the Alstroemeria chromosomes in an interspecific hybrid. The potential use of these repetitive DNA sequences for the study of phylogenetic relationships within the genus Alstroemeria is discussed. Received: 24 November 1996/Accepted: 20 December 1996  相似文献   

10.
A repetitive DNA sequence, ZmCR2.6c, was isolated from maize based on centromeric sequence CCS1 of the wild grass Brachypodium sylvaticum. ZmCR2.6c is 309 bp in length and shares 65% homology to bases 421–721 of the sorghum centromeric sequence pSau3A9. Fluorescence in situ hybridization (FISH) localized ZmCR2.6c to the primary constrictions of pachytene bivalents and to the stretched regions of MI/AI chromosomes, indicating that ZmCR2.6c is an important part of the centromere. Based on measurements of chromosome lengths and the positions of FISH signals of several cells, a pachytene karyotype was constructed for maize inbred line KYS. The karyotype agrees well with those derived from traditional analyses. Four classes of tandemly repeated sequences were mapped to the karyotype by FISH. Repeats 180 bp long are present in cytologically detectable knobs on 5L, 6S, 6L, 7L, and 9S, as well as at the termini and in the interstitial regions of many chromosomes not reported previously. A most interesting finding is the presence of 180-bp repeats in the NOR-secondary constriction. TR-1 elements co-exist with 180-bp repeats in the knob on 6S and form alone a small cluster in 4L. 26S and 5S rRNA genes are located in the NOR and at 2L.88, respectively. The combination of chromosome length, centromere position, and distribution of the tandem repeats allows all chromosomes to be identified unambiguously. The results presented form an important basis for using FISH for physical mapping and for investigating genome organization in maize. Received: 29 June 1999 / Accepted: 10 November 1999  相似文献   

11.
Summary Repetitive DNA families in sexual species are subject to a variety of turnover mechanisms capable of homogenising newly arising mutations. Very high levels of homogeneity in DNA families in some species ofDrosophila indicate that the rate of turnover is fast relative to that of mutation. To gauge the generality of such phenomena, we cloned and sequenced individual members of homologous repetitive DNA families from two subspecies of tsetse fly,Glossina morsitans centralis andG. morsitans morsitans. Unexpectedly high levels of variation were found within each subspecies, averaging 24% and 31%, respectively. Contiguous repeats and repeats cloned at random were comparably divergent. Nevertheless, it was possible to identify three instances of apparent homogenisation, each being, remarkably, of an insertion/deletion nature. We conclude that the rate of turnover in the tsetse families is comparable to that of most mutations, and discuss the possible parameters affecting flux in these families.  相似文献   

12.
Summary The structure of three members of a repetitive DNA family from the genome of the nematodeCaenorhabditis elegans has been studied. The three repetitive elements have a similar unitary structure consisting of two 451-bp sequences in inverted orientation separated by 491 bp, 1.5 kb, and 2.5 kb, respectively. The 491-bp sequence separating the inverted 451-bp sequences of the shortest element is found adjacent to one of the repeats in the other two elements as well. The combination of the three sequences we define as the basic repetitive unit. Comparison of the nucleotide sequences of the three elements has allowed the identification of the one most closely resembling the primordial repetitive element. Additionally, a process of co-evolution is evident that results in the introduction of identical sequence changes into both copies of the inverted sequence within a single unit. Possible mechanisms are discussed for the homogenization of these sequences. A direct test of one possible homogenization mechanism, namely homologous recombination between the inverted sequences accompanied by gene conversion, shows that recombination between the inverted repeats does not occur at high frequency.  相似文献   

13.
A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. in situ hybridization experiments showed dispersed organization of the sequences over all chromosomes of H. vulgare and the wild barley species H. bulbosum, H. marinum and H. murinum. Southern blot hybridization revealed different levels of polymorphism among barley species and the RFLP data were used to generate a phylogenetic tree for the genus Hordeum. Our data are in a good agreement with the classification system which suggests the division of the genus into four major groups, containing the genomes I, X, Y, and H. However, our investigation also supports previous molecular studies of barley species where the unique position of H. bulbosum has been pointed out. In our experiments, H. bulbosum generally had hybridization patterns different from those of H. vulgare, although both carry the I genome. Based on our results we present a hypothesis concerning the possible origin and phylogeny of the polyploid barley species H. secalinum, H. depressum and the H. brachyantherum complex.  相似文献   

14.
SixBrassica species, known as the triangle of U, and four species from related genera were characterized by DNA fingerprinting with simple repetitive oligonucleotide probes. Our results show that CT-, TCC-, and GTG-repeat motifs are equally abundant in the genomes of the sixBrassica species. In contrast, GATA-, GGAT-, and GACA-multimers are unevenly distributed among different species. As judged from the number and strength of hybridization signals, the highest copy number of all three motifs occurs inBrassica nigra, while the lowest is observed inB. oleracea. The abundance of GATA-and GACA-repeats varies in a coordinate way. The amphidiploid genomes ofB. juncea, B. carinata, andB. napus each harbour intermediate amounts of (GATA)4 and (GACA)4-detected repeats as compared to their diploid progenitors, thus supporting the concept of the U triangle. GATA-, GACA-, and GGAT-repeats were also abundant inEruca sativa andSinapis arvensis, but not inRaphanus sativus andSinapis alba. These results support the idea thatBrassica nigra is more closely related toSinapis arvensis than to otherBrassica species such asB. rapa andB. oleracea.  相似文献   

15.
Summary A family of highly repetitive DNA elements, the Cla-elements, is present in the genomes of the two sibling speciesChironomus th. thummi andCh. th. piger. These Cla-elements are organized in large tandem repetitive clusters as well as occuring as interspersed monomeric elements, in both subspecies. The analysis of a monomeric Cla-element and several kilobases of its flanking sequences fromCh. th. piger revealed that the short Cla-elements are cotransposed together with adjacent DNA. We found the same association of Cla-elements with specific flanking DNA in clones obtained from the rDNA ofCh. th. thummi and from nonribosomal Cla-DNA ofCh. th. piger. The Cla-element-flanking DNA is clearly also repetitive, but mainly of inter-spersed organization.  相似文献   

16.
Mitotic chromosomes of four Vicia species (V. sativa, V. grandiflora, V. pannonica and V. narbonensis) were subjected to in situ hybridization with probes derived from conserved plant repetitive DNA sequences (18S-25S and 5S rDNA, telomeres) and genus-specific satellite repeats (VicTR-A and VicTR-B). Numbers and positions of hybridization signals provided cytogenetic landmarks suitable for unambiguous identification of all chromosomes, and establishment of the karyotypes. The VicTR-A and -B sequences, in particular, produced highly informative banding patterns that alone were sufficient for discrimination of all chromosomes. However, these patterns were not conserved among species and thus could not be employed for identification of homologous chromosomes. This fact, together with observed variations in positions and numbers of rDNA loci, suggests considerable divergence between karyotypes of the species studied.  相似文献   

17.
We describe a repetitive DNA region at the 3 end of the mitochondrial DNA (mtDNA) control region and compare it in 21 carnivore species representing eight carnivore families. The sequence and organization of the repetitive motifs can differ extensively between arrays; however, all motifs appear to be derived from the core motif ACGT. Sequence data and Southern blot analysis demonstrate extensive heteroplasmy. The general form of the array is similar between heteroplasmic variants within an individual and between individuals within a species (varying primarily in the length of the array, though two clones from the northern elephant seal are exceptional). Within certain families, notably ursids, the array structure is also similar between species. Similarity between species was not apparent in other carnivore families, such as the mustelids, suggesting rapid changes in the organization and sequence of some arrays. The pattern of change seen within and between species suggests that a dominant mechanism involved in the evolution of these arrays is DNA slippage. A comparative analysis shows that the motifs that are being reiterated or deleted vary within and between arrays, suggesting a varying rate of DNA turnover. We discuss the evolutionary implications of the observed patterns of variation and extreme levels of heteroplasmy.By acceptance of this article, the publisher acknowledges the right of the US Government to retain non-exclusive, royalty-free license in and to any copyright covering the article. Correspondence to: A.R. Hoetzel  相似文献   

18.
Summary Molecular DNA markers can be very useful to assess the amount of genetic variation and are thus important for taxonomic studies. Two moderately repetitive sequences were isolated from N. plumbaginifolia leaf DNA and used to screen various Nicotiana species. A huge variability was detected among species belonging to the same subgenus or the same section, which could be utilized for a molecular taxonomy of the genus Nicotiana. Although variation at the DNA level between somaclonal lines was reported, we did not find evidence for variability of both repetitive sequences in established callus culture obtained from protoplasts of Nicotiana plumbaginifolia.  相似文献   

19.
Ogata N 《Biochimie》2007,89(5):702-712
DNA polymerase from hyperthermophilic bacteria can elongate tandem repetitive oligoDNA with a complete or incomplete palindromic sequence under isothermal conditions by "hairpin elongation". However, the product of the reaction has not yet been sufficiently characterized. Here, I demonstrate that when palindromic repetitive oligoDNA, e.g., (5'AGATATCT3')(6), was added as a "seed" to the DNA synthesis reaction catalyzed by DNA polymerase from the archaea Thermococcus litoralis (Vent polymerase) at 74 degrees C, the product was (5'AGATATCT3')(n). The product itself was palindromic and repetitive, and its motif (unit) sequence was exactly the same as that of the seed oligoDNA. On the other hand, when a pseudopalindrome, which contains a palindrome-breaking nucleotide (underlined), was present in seed oligoDNA, e.g., (5'GATTC3')(6), the product was (5'GATATC3')(n), which had a different motif sequence from that of the seed oligoDNA. When a pseudopalindrome (5'AGATATCA3')(6) was added to the reaction, the products were 5'TATCA . (AGATATCA)(3) . AGATATCT . (TGATATCT)(5) . TGATA3', etc. When 5'AGATATCA . (AGATATCT3')(5) was added, products were 5'TATCT . (AGATATCT)(2).TGATATCT . AGATATCT . AGATATCA . AGATATCT . AGA3', etc., demonstrating the generation of many "mutations" in the product DNA. I conclude that a tandem repetitive sequence is faithfully elongated (amplified) by hyperthermophilic DNA polymerase if it is completely palindromic, but is elongated with many errors if it is incompletely palindromic (pseudopalindromic) or mixed with a pseudopalindrome. The results suggest a protein-catalyzed elongation/diversification mechanism of short repetitive DNAs on the early earth.  相似文献   

20.
Repetitive DNA sequences contribute considerably to an understanding of the genomes of higher plants. Repetitive DNA sequences tend to be genome-specific due to the rate of amplification and extent of divergence. Two genome-specific probes from the genomic DNA library of Festuca arundinacea var. genuina Schreb.were selected and characterized. TF521 was found to be P genome-specific since it was able to hybridize with Festuca pratensis Huds. (PP) and Festuca arundinacea var. genuina (PPG1G1G2G2), but not, or only weakly, with tetraploid Festuca species. TF521 hybridized only with the diploid Festuca and not with the Lolium species (LL). TF436 was specific to tetraploid species of Festuca, such as F. arundinacea var. glauces-cens Boiss. (G1G1G2G2) and Festuca mairei St. Yves (M1M1M2M2). By means of Southern hybridization, TF436 was used to detect chromatin introgression of F. mairei in the progenies of the hybrid F. mairei×Lolium perenne L. Potential addition and translocation lines were identified in the BC1F1 derivatives of F. mairei×L. perenne. In situ hybridization was used to confirm the genetic identity of these lines. Sequence analyses indicated that TF436 and TF521 were two novel DNA sequences as no homologous sequences were found in Genebank. Received: 22 June 2000 / Accepted: 3 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号