首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A 1500 bp fragment of the Aspergillus nidulans mitochondrial genome contains genes for arginine and asparagine tRNAs, an unassigned reading frame, and the structural gene for ATPase subunit 6. The tRNA genes possess 66% nucleotide homology and possibly originated by a relatively recent duplication event. The unassigned reading frame displays a low level of homology with the human URF A6L. The predicted amino acid sequence of the A-nidulans ATPase subunit 6 gene is 40% homologous to the yeast polypeptide and includes the short, highly conserved regions also present in the equivalent subunits from other mitochondrial systems and from Escherichia coli.  相似文献   

3.
Summary Plasmid pClK1, a linear mitochondrial plasmid of Claviceps purpurea, was completely sequenced. The sequence contains two long open reading frames (ORF1, 3291 bp; ORF2, 2910 bp), and at least four smaller ORFs. The potential polypeptide derived from ORF1 shows homology to the family B type DNA polymerases. The product of ORF2 has significant homology to the mitochondrial RNA polymerase of yeast and RNA polymerases from bacteriophages. ORF1 and ORF2 show homology to URF3 and URF1 of the maize plasmids S1 and S2, respectively. No homology to any published protein sequence was found for the smaller ORFs. The origin of the terminal protein attached to the 5 ends of pClK1 remains open; several alternatives for its origin are discussed. The sequence data as a whole confirm the virus-like character of pClK1 already postulated from structural properties. Thus pClK1 together with S plasmids of maize and several other linear plasmids make up a distinct class of DNA species of plants and fungi probably derived from a common virus-like ancestor.  相似文献   

4.
5.
The entire 16.7-kilobase (kb) transcribed region of the Leishmania tarentolae maxicircle was compared to the entire 15-kb transcribed region of the Trypanosoma brucei maxicircle at the nucleotide sequence level by dot matrix analysis and by alignments of individual genes. The L. tarentolae NADH dehydrogenase subunit 1 (ND1) gene was identified in a newly obtained 2.9-kb sequence. All but two regions which flank the cytochrome b gene are highly conserved in both species. One 3.1-kb region in L. tarentolae that contains the cytochrome oxidase subunit III (COIII) gene and several open reading frames corresponds to a 2-kb sequence in T. brucei with limited sequence homology that lacks the COIII gene. Another 0.6-kb region that comprises an unidentified open reading frame (open reading frame 12) in L. tarentolae is substituted by a nonhomologous 0.4-kb open reading frame in T. brucei. A short intergenic region between the ND1 gene and the maxicircle unidentified reading frame 1 gene shows limited sequence homology, and the regions between the ND4 and ND5 genes and between the COI and ND4 genes are not conserved. All of the intergenic regions share G + C richness and a similar pattern of G versus C strand bias. 1.8 kb of the L. tarentolae divergent region (DV) and around 3 kb of the T. brucei DV were also obtained. The T. brucei DV sequences were not homologous to the L. tarentolae DV sequence but were organized in a similar fashion with tandem repeats of varying complexity.  相似文献   

6.
Two types of defective mitochondrial DNA molecules with large deletions (5 kbp and 40 kbp) have previously been identified in the stopper mutant, E35, of Neurospora crassa. The junction fragments spanning the deletion endpoints have now been cloned and sequenced, and their sequences compared with those of the corresponding wild-type fragments. We show that both types of defective mitochondrial DNAs result from deletions of sequences flanked by short direct repeats, which are themselves parts of larger inverted repeat sequences. In every case, the short direct repeat sequences consist of a run of pyrimidines in one strand and purines in the other. We also report the sequence of a 2151-bp HindIII fragment, which is deleted in both of the defective mitochondrial DNAs. Besides the previously identified gene for a methionine tRNA, the 2151-bp DNA sequence contains an open reading frame with the potential to code for a hydrophobic protein 583 amino acids long. This hydrophobic protein has three blocks of significant homology with proteins coded by URF2 found in other mitochondrial genomes. Since the mammalian mitochondrial URF2 has recently been shown to code for a subunit of NADH dehydrogenase, part of the DNA sequence missing in the E35 stopper mutant of N. crassa may also code for a subunit of NADH dehydrogenase.  相似文献   

7.
8.
Mitochondria from the S male-sterile cytoplasm of maize contain unique DNA-protein complexes, designated S-1 and S-2. These complexes consist of double-stranded linear DNAs with proteins covalently attached to the 5' termini. To learn more about these unusual DNAs we have determined the complete nucleotide sequence of the S-1 DNA molecule (6397 bp). The sequence of S-2 has been previously determined. S-1 and S-2 are structurally similar and contain ˜1.7kb of sequence homology. S-1 is terminated by exact 208-bp inverted repeats that are identical with the terminal inverted repeats of S-2. S-1 and S-2 also contain a 1462-bp region of nearly perfect homology, which includes one of the terminal inverted repeats. The homology between the two molecules may be maintained, in part, by homologous recombination. S-1 has three long unidentified open reading frames, URF2 (1017 bp), URF3 (2787 bp) and URF4 (768 bp). URF2 occurs in the 1462-bp region of homology and is identical in length and location in both S-1 and S-2. Based on their structural organization and their viral-like characteristics, we propose that S-1 and S-2 code for functions involved with their maintenance and replication.  相似文献   

9.
Summary Genes homologous to the mammalian mitochondrial NADH dehydrogenase subunit genes ND4L and ND5 were identified in the mitochondrial genome of the filamentous fungus Neurospora crassa, and the structure and expression of these genes was examined. The ND4L gene (interrupted by one intervening sequence) potentially encodes an 89 residue long hydrophobic protein that shares about 26% homology (or 41% homology if conservative amino acid substitutions are allowed) with the analogous human mitochondrial protein. The ND5 gene (which contains two introns) encodes a 715 residue polypeptide that shares 23% homology with the human analogue; a 300 amino acid long region is highly conserved (50% homology) in the two ND5 proteins. The stop codon of the ND4L gene overlaps the initiation codon of the downstream ND5 gene, and the two genes are contranscribed and probably cotranslated. A presumed mature dicistronic (ND4L plus ND5) RNA was detected. The postulated mRNA (about 3.2 kb) contains 5 and 3 non-coding regions of about 86 and 730 nucleotides, respectively; this species is generated from very large precursor RNAs by a complex processing pathway. The ND4L and ND5 introns are all stable after their excision from the precursor species.Abbreviations bp base pairs - rRNA ribosomal RNA - ND NADH dehydrogenase - URF unidentified reading frame - kDal kilodaltons; a.a., amino acid  相似文献   

10.
The gene gyrA of Escherichia coli, which encodes the A subunit of DNA gyrase (topoisomerase II), has been cloned and a region of approximately 3300 base-pairs sequenced. An open reading frame of 2625 nucleotides coding for a protein of 97,000 Mr is located. The peptide weight of the subunit predicted from this open reading frame is in close agreement with previously published estimates of that of the A subunit. There is a "TATAAT" promoter motif located 44 bases upstream from the first "ATG" of the open reading frame. The amino acid sequence derived from the nucleotide sequence is about 50% homologous with that derived from the Bacillus subtilis gyrA gene sequence, with several regions showing greater than 90% homology.  相似文献   

11.
A 9.2 kb segment of the maxi-circle of Trypanosoma brucei mitochondrial DNA contains the genes for cytochrome c oxidase subunits I and II (coxI and coxII) and seven Unassigned Reading Frames ("URFs"). The genes for coxI and coxII display considerable homology at the aminoacid level (38 and 25%, respectively) to the corresponding genes in fungal and mammalian mtDNA, the only striking point of divergence being an unusually high cysteine content (about 4.5%). The reading frame coding for cytochrome c oxidase subunit II is discontinuous: the C-terminal portion of about 40 aminoacids, is present in the DNA-sequence in a -1 reading frame with respect to the N-terminal moiety. URF5, 8 and 10, show a low but distinct homology (about 20%) to mammalian mitochondrial URF-1, 4 and 5, respectively. In URF5, the first AUG is found at codon 145, whereas extensive homology to mammalian URF-1 sequences occurs upstream of this position. The possibility exists that UUG can serve as an initiator codon. URF7 and URF9 have a highly unusual aminoacid composition and do not possess AUG or UUG initiator codons. These URFs probably do not have a protein-coding function. The segment does not contain conventional tRNA genes.  相似文献   

12.
13.
14.
We report the complete nucleotide sequence of the Tetrahymena pyriformis mitochondrial genome and a comparison of its gene content and organization with that of Paramecium aurelia mtDNA. T. pyriformis mtDNA is a linear molecule of 47,172 bp (78.7 % A+T) excluding telomeric sequences (identical tandem repeats of 31 bp at each end of the genome). In addition to genes encoding the previously described bipartite small and large subunit rRNAs, the T. pyriformis mitochondrial genome contains 21 protein-coding genes that are clearly homologous to genes of defined function in other mtDNAs, including one (yejR) that specifies a component of a cytochrome c biogenesis pathway. As well, T. pyriformis mtDNA contains 22 open reading frames of unknown function larger than 60 codons, potentially specifying proteins ranging in size from 74 to 1386 amino acid residues. A total of 13 of these open reading frames ("ciliate-specific") are found in P. aurelia mtDNA, whereas the remaining nine appear to be unique to T. pyriformis; however, of the latter, five are positionally equivalent and of similar size in the two ciliate mitochondrial genomes, suggesting they may also be homologous, even though this is not evident from sequence comparisons. Only eight tRNA genes encoding seven distinct tRNAs are found in T. pyriformis mtDNA, formally confirming a long-standing proposal that most T. pyriformis mitochondrial tRNAs are nucleus-encoded species imported from the cytosol. Atypical features of mitochondrial gene organization and expression in T. pyriformis mtDNA include split and rearranged large subunit rRNA genes, as well as a split nad1 gene (encoding subunit 1 of NADH dehydrogenase of respiratory complex I) whose two segments are located on and transcribed from opposite strands, as is also the case in P. aurelia. Gene content and arrangement are very similar in T. pyriformis and P. aurelia mtDNAs, the two differing by a limited number of duplication, inversion and rearrangement events. Phylogenetic analyses using concatenated sequences of several mtDNA-encoded proteins provide high bootstrap support for the monophyly of alveolates (ciliates, dinoflagellates and apicomplexans) and slime molds.  相似文献   

15.
Complete nucleotide sequences, precise endpoints and coding potential of several 3.0-kilobase mitochondrial DNA (mtDNA) repeating units derived from two isofemale lineages of the mermithid nematode Romanomermis culicivorax have been determined. Endpoint analysis has allowed us to infer deletion and inversion events that most likely generated the present day repeat configuration. Each amplified unit contains the genes for NADH dehydrogenase subunits 3 and 6 (ND3 and ND6), an open reading frame (ORF 1) that represents a cytochrome P450-like gene, and three additional unidentified open reading frames. The primary nucleotide sequences of the R. culicivorax mt-repeat copies within individual haplotypes are highly conserved; three nearly complete copies of the repeat unit vary by 0.01% at the nucleotide level. These observations suggest that concerted evolution mechanisms may be active, resulting in sequence homogenation of these lengthy duplications.  相似文献   

16.
The structural gene of the Paracoccus denitrificans NADH-ubiquinone oxidoreductase encoding a homologue of the 75-kDa subunit of bovine complex I (NQO3) has been located and sequenced. It is located approximately 1 kbp downstream of the gene coding for the NADH-binding subunit (NQO1) [Xu, X., Matsuno-Yagi, A., and Yagi, T. (1991) Biochemistry 30, 6422-6428] and is composed of 2019 base pairs and codes for 673 amino acid residues with a calculated molecular weight of 73,159. The M(r) 66,000 polypeptide of the isolated Paracoccus NADH dehydrogenase complex is assigned the NQO3 designation on the basis of N-terminal protein sequence analysis, amino acid analysis, and immuno-cross-reactivity. The encoded protein contains a putative tetranuclear iron-sulfur cluster (probably cluster N4) and possibly a binuclear iron-sulfur cluster. An unidentified reading frame (URF3) which is composed of 396 base pairs and possibly codes for 132 amino acid residues was found between the NQO1 and NQO3 genes. When partial DNA sequencing of the regions downstream of the NQO3 gene was performed, sequences homologous to the mitochondrial ND-1, ND-5, and ND-2 gene products of bovine complex I were found, suggesting that the gene cluster carrying the Paracoccus NADH dehydrogenase complex contains not only structural genes encoding water-soluble subunits but also structural genes encoding hydrophobic subunits.  相似文献   

17.
18.
H Bertrand  B S Chan  A J Griffiths 《Cell》1985,41(3):877-884
The kalilo variants of Neurospora contain a cytoplasmic genetic factor that causes senescence. This factor is a 9.0 kb transposable element (kalDNA) that lacks nucleotide sequence homology with mtDNA and is inserted into the mitochondrial chromosome, often at sites located within the open reading frame in the intron-DNA of the mitochondrial 25S-rRNA gene. Genomes containing the "foreign" DNA insert accumulate during growth, and death occurs as the cells become deficient in functional large and small subunits of mitochondrial ribosomes. The kalDNA transposon may be an "activator" element that causes breaks in mtDNA. Nonsenescing [+] strains of Neurospora do not contain kalDNA.  相似文献   

19.
A cloned restriction fragment of maize chloroplast DNA (Bam H1 fragment 5) is shown to contain an open reading frame which encodes a basic protein of 201 amino acid residues with 40-50% sequence homology to E. coli ribosomal protein S4. Based on the experimentally determined sequence homology between the highly conserved bacterial ribosomal protein L12 and its chloroplast homologue (Bartsch M., Kimura, M. and Subramanian, A.R. (1982) Proc. Natl. Acad. Sci. USA 79, 6871), we conclude that this reading frame represents the maize chloroplast S4 gene. The nucleotide sequence of a 1100 base pair DNA segment containing the putative gene is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号