首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the effects of temperature and pressure on the structure, conformation and phase behavior of aqueous dispersions of the model lipid "raft" mixture palmitoyloleoylphosphatidylcholine (POPC)/bovine brain sphingomyelin (SM)/cholesterol (Chol) (1:1:1). We investigated interchain interactions, hydrogen bonding, conformational and structural properties as well as phase transformations of this system using Fourier transform-infrared (FT-IR) spectroscopy, small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), and Laurdan fluorescence spectroscopy. The IR spectral parameters in combination with the scattering patterns from the SAXS measurements were used to detect structural and conformational transformations upon changes of pressure up to 7-9 kbar and temperature in the range from 1 to about 80 degrees C. The generalized polarization function (GP) values, obtained from the Laurdan fluorescence spectroscopy studies also reveal temperature and pressure dependent phase changes. DSC and PPC were used to detect thermodynamic properties accompanying the temperature-dependent phase changes. In combination with literature fluorescence spectroscopy and microscopy data, a tentative p,T stability diagram of the mixture has been established. The data reveal a broad liquid-order/solid-ordered (lo+so) two-phase coexistence region below 8+/-2 degrees C at ambient pressure. With increasing temperature, a lo+ld+so three-phase region is formed, which extends up to approximately 27 degrees C, where a liquid-ordered/liquid-disordered (lo+ld) immiscibility region is formed. Finally, above 48+/-2 degrees C, the POPC/SM/Chol (1:1:1) mixture becomes completely fluid-like (liquid-disordered, ld). With increasing pressure, all phase transition lines shift to higher temperatures. Notably, the lo+ld (+so) phase coexistence region, mimicking raft-like lateral phase separation in natural membranes, extends over a rather wide temperature range of about 40 degrees C, and a pressure range, which extends up to about 2 kbar for T=37 degrees C. Interestingly, in this pressure range, ceasing of membrane protein function in natural membrane environments has been observed for a variety of systems.  相似文献   

2.
We report on the effects of temperature and pressure on the structure, conformation and phase behavior of aqueous dispersions of the model lipid “raft” mixture palmitoyloleoylphosphatidylcholine (POPC)/bovine brain sphingomyelin (SM)/cholesterol (Chol) (1:1:1). We investigated interchain interactions, hydrogen bonding, conformational and structural properties as well as phase transformations of this system using Fourier transform-infrared (FT-IR) spectroscopy, small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), and Laurdan fluorescence spectroscopy. The IR spectral parameters in combination with the scattering patterns from the SAXS measurements were used to detect structural and conformational transformations upon changes of pressure up to 7-9 kbar and temperature in the range from 1 to about 80 °C. The generalized polarization function (GP) values, obtained from the Laurdan fluorescence spectroscopy studies also reveal temperature and pressure dependent phase changes. DSC and PPC were used to detect thermodynamic properties accompanying the temperature-dependent phase changes. In combination with literature fluorescence spectroscopy and microscopy data, a tentative p,T stability diagram of the mixture has been established. The data reveal a broad liquid-order/solid-ordered (lo + so) two-phase coexistence region below 8 ± 2 °C at ambient pressure. With increasing temperature, a lo + ld + so three-phase region is formed, which extends up to ∼27 °C, where a liquid-ordered/liquid-disordered (lo + ld) immiscibility region is formed. Finally, above 48 ± 2 °C, the POPC/SM/Chol (1:1:1) mixture becomes completely fluid-like (liquid-disordered, ld). With increasing pressure, all phase transition lines shift to higher temperatures. Notably, the lo + ld (+so) phase coexistence region, mimicking raft-like lateral phase separation in natural membranes, extends over a rather wide temperature range of about 40 °C, and a pressure range, which extends up to about 2 kbar for T = 37 °C. Interestingly, in this pressure range, ceasing of membrane protein function in natural membrane environments has been observed for a variety of systems.  相似文献   

3.
Oxidation of unsaturated membrane phospholipids by oxidative stress is associated with inflammation, infection, numerous diseases and neurodegenerative disorders. Lipid oxidation is observed in experimental samples when the parent lipid is exposed to oxidative stressors. The effect of phospholipid oxidation on the properties of biological membranes are still being explored, while low concentrations (0.1–2.0?mol%) of oxidised phospholipids are associated with disease states [1]. Previous computational studies have focused on the effect of high concentrations (~50?mol%) of oxidised phospholipids on binary lipid bilayers. This work systematically characterises the effect of lower concentrations (~10?mol%) of two oxidised lipid species, PoxnoPC (1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine) or PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine), on POPC/cholesterol and pure POPC bilayers. During μs atomistic simulations in pure POPC bilayers, PoxnoPC and PazePC reoriented their oxidised sn-2 acyl chains towards the solution, and PazePC adopted an extended conformation. The addition of 20?mol% cholesterol not only modulated the fluidity of the bilayers; it also modulated the flexibility of the PoxnoPC oxidised sn-2 tail, reducing bilayer disorder. In contrast, the addition of cholesterol had little effect on bilayers containing PazePC. Our studies show that the effect of oxidised lipids on the biophysical properties of a multicomponent bilayer cannot be intuitively extrapolated from a binary lipid system.  相似文献   

4.
The effect of temperature on the lateral structure of lipid bilayers composed of porcine brain ceramide and 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC), with and without addition of cholesterol, were studied using differential scanning calorimetry, Fourier transformed infrared spectroscopy, atomic force microscopy, and confocal/two-photon excitation fluorescence microscopy (which included LAURDAN generalized polarization function images). A broad gel/fluid phase coexistence temperature regime, characterized by the presence of micrometer-sized gel-phase domains with stripe and flowerlike shapes, was observed for different POPC/ceramide mixtures (up to approximately 25 mol % ceramide). This observed phase coexistence scenario is in contrast to that reported previously for this mixture, where absence of gel/fluid phase coexistence was claimed using bulk LAURDAN generalized polarization (GP) measurements. We demonstrate that this apparent discrepancy (based on the direct comparison between the LAURDAN GP data obtained in the microscope and the fluorometer) disappears when the additive property of the LAURDAN GP function is taken into account to examine the data obtained using bulk fluorescence measurements. Addition of cholesterol to the POPC/ceramide mixtures shows a gradual transition from a gel/fluid to gel/liquid-ordered phase coexistence scenario as indicated by the different experimental techniques used in our experiments. This last result suggests the absence of fluid-ordered/fluid-disordered phase coexistence in the ternary mixtures studied in contrast to that observed at similar molar concentrations with other ceramide-base-containing lipid mixtures (such as POPC/sphingomyelin/cholesterol, which is used as a canonical raft model membrane). Additionally, we observe a critical cholesterol concentration in the ternary mixtures that generates a peculiar lateral pattern characterized by the observation of three distinct regions in the membrane.  相似文献   

5.
We have synthesized and studied by proton NMR a duplex heptaoligonucleotide containing a 5-bromouracil (brU)-adenine base pair. This represents the first structural characterization of a B-form DNA containing brU. The brU.A base pair is Watson-Crick rather than Hoogsteen as seen for the monomers in the crystalline state. From analysis of the NOESY sepctra at very short mixing times evidence is presented that substitution of brU for T induces significant conformational changes from that of a normal B DNA. The helix twist between brU4.A11 and G3.C12 is ca. 15 degrees and for both brU4 and G3 the glycosyl torsion angles are significantly changed. The imino proton of the bru.A base pair shows a pH insensitive line with which shows that the pK of brU in this base pair is very much higher than that of the monomer.  相似文献   

6.
An oligodeoxynucleotide duplex containing the chemotherapeutic agent 5-fluorouracil (FU) has been constructed by solid phase phosphotriester synthesis and has been studied in solution by proton NMR. In this study, we provide the first structural characterization of a DNA complex containing a FU.A base pair. It has been determined that the 7-mer duplex containing a central FU.A base pair adopts a normal right-handed configuration and the A residue in the FU.A pair is oriented in the normal anticonfiguration giving a Watson-Crick base pair. The significant difference between T.A and FU.A base pairs is dynamic, not structural: the FU.A base pair opens faster than normal base pairs in the oligonucleotide studied. We provide evidence that the FU.A base pair has a significantly enhanced opening rate resulting form decreased stacking of the 5-fluorouracil residue and not from the enhanced acidity of the 5'-fluorouracil imino proton.  相似文献   

7.
We employ NMR structure determination, thermodynamics, and enzymatics to uncover the structural, thermodynamic and enzymatic properties of alpha/beta-ODNs containing 3'-3' and 5'-5' linkages. RNase H studies show that alpha/beta-gapmers that are designed to target erbB-2 efficiently elicit RNase H activity. NMR structures of DNA.DNA and DNA.RNA duplexes reveal that single alpha-anomeric residues fit well into either duplex, but alter the dynamic properties of the backbone and deoxyriboses as well as the topology of the minor groove in the DNA.RNA hybrid.  相似文献   

8.
A ternary lipid mixture of palmitoyl-oleoyl-phosphatidylcholine (POPC), palmitoyl-erythro-sphingosylphosphorylcholine (PSM), and cholesterol at a mixing ratio of 37.5:37.5:25 mol/mol/mol was characterized using fluorescence microscopy, 2H NMR, and electron paramagnetic resonance spectroscopy. The synthetic PSM provides an excellent molecule for studying the molecular properties of raft phases. It shows a narrow phase transition at a temperature of 311 K and is commercially available with a perdeuterated sn-2 chain. Fluorescence microscopy shows that large inhomogeneities in the mixed membranes are observed in the coexistence region of liquid-ordered and liquid-disordered lipid phases. Above 310 K, no optically detectable phase separation was shown. Upon decrease in temperature, a redistribution of the cholesterol into large liquid-ordered PSM/cholesterol domains and depletion of cholesterol from liquid-disordered POPC domains was observed by 2H NMR and electron paramagnetic resonance experiments. However, there is no complete segregation of the cholesterol into the liquid-ordered phase and also POPC-rich domains contain the sterol in the phase coexistence region. We further compared order parameters and packing properties of deuterated PSM or POPC in the raft mixture at 313 K, i.e., in the liquid crystalline phase state. PSM shows significantly larger 2H NMR order parameters in the raft phase than POPC. This can be explained by an inhomogeneous interaction of cholesterol between the lipid species and the mutual influence of the phospholipids on each other. These observations point toward an inhomogeneous distribution of the lipids also in the liquid crystalline phase at 313 K. From the prerequisite that order parameters are identical in a completely homogeneously mixed membrane, we can determine a minimal microdomain size of 45-70 nm in PSM/POPC/cholesterol mixtures above the main phase transition of all lipids.  相似文献   

9.
The kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin from vesicles of porcine brain sphingomyelin (BSM), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and cholesterol (Chol) were investigated as a function of temperature and composition. Sphingomyelin (SM)/Chol mixtures form a liquid-ordered (L(o)) phase whereas POPC exists in the liquid-disordered (L(d)) phase at ambient temperature. delta-Lysin binds strongly to L(d) and poorly to L(o) phase. In BSM/Chol/POPC vesicles the rate of carboxyfluorescein efflux induced by delta-lysin increases as the POPC content decreases. This is explained by the increase of delta-lysin concentration in L(d) domains, which enhances membrane perturbation by the peptide. Phase separations in the micrometer scale have been observed by fluorescence microscopy in SM/Chol/POPC mixtures for some SM, though not for BSM. Thus, delta-lysin must detect heterogeneities (domains) in BSM/Chol/POPC on a much smaller scale. Advantage was taken of the inverse variation of the efflux rate with the L(d) content of BSM/Chol/POPC vesicles to estimate the L(d) fraction in those mixtures. These results were combined with differential scanning calorimetry to obtain the BSM/Chol/POPC phase diagram as a function of temperature.  相似文献   

10.
We have applied a hybrid equilibration and sampling procedure for the atomic level simulation of a hydrated lipid bilayer to systems consisting of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol, and palmitoyl-oleyl phosphatidylcholine (POPC) at low (approximately 6%) cholesterol concentration. The procedure is applied to bilayers of 94 molecules of DPPC, 6 molecules of cholesterol, and 3205 water molecules, and to bilayers of 120 molecules of POPC, 8 molecules of cholesterol, and 4268 water molecules, at a temperature of 325 K. After equilibration, three separate 400-ps continuous molecular dynamics runs, separated by 10,000 configurational bias Monte Carlo steps, were carried out for each system. Properties of the systems were calculated and averaged over the three separate runs. Results of the simulations are presented and compared with experimental data and with other recent simulations of DPPC and cholesterol, and of pure DPPC, and pure POPC. Certain properties of the bilayers are indistinguishable from cholesterol-free bilayers, including lateral diffusion and electron density. Other properties, most notably the order parameter profile, show the effect of cholesterol even at low concentrations.  相似文献   

11.
12.
Lipid rafts, in biological membranes, are cholesterol-rich nanodomains that regulate many protein activities and cellular processes. Understanding the formation of the lipid-raft nanodomains helps us elucidate many complex interactions in the cell. In this study, the formation of lipid-raft nanodomains in a ternary palmitoyl-oleoyl-phosphatidylcholine/stearoyl-sphingomyelin/cholesterol (POPC/DPSM/Chol) lipid mixture, the most realistic surrogate model for biological membranes, has been successfully observed for the first time in-silico using microsecond timescale molecular dynamics simulations. The model reveals the formation of cholesterol-induced nanodomains with raft-like characteristics and their underlying mechanism: the cholesterol molecules segregate themselves into cholesterol nanodomains and then enrich the cholesterol-rich domain with sphingomyelin molecules to form a lipid raft thanks to the weak bonding of cholesterol with sphingomyelin. Besides, it is found that the increase in cholesterol concentration enhances the biophysical properties (e.g., bilayer thickness, area per lipid headgroup, and order parameter) of the lipid raft nanodomains. Such findings suggest that the POPC/DPSM/Chol bilayer is a suitable model to fundamentally extend the nanodomain evolution to investigate their lifetime and kinetics as well as to study protein-lipid interaction, protein-protein interaction, and selection of therapeutic molecules in the presence of lipid rafts.  相似文献   

13.
MDCO-216, a complex of dimeric recombinant apoA-IMilano (apoA-IM) and palmitoyl-oleoyl-phosphatidylcholine (POPC), was administered to cynomolgus monkeys at 30, 100, and 300 mg/kg every other day for a total of 21 infusions, and effects on lipids, (apo)lipoproteins, and ex-vivo cholesterol efflux capacity were monitored. After 7 or 20 infusions, free cholesterol (FC) and phospholipids (PL) were strongly increased, and HDL-cholesterol (HDL-C), apoA-I, and apoA-II were strongly decreased. We then measured short-term effects on apoA-IM, lipids, and (apo)lipoproteins after the first or the last infusion. After the first infusion, PL and FC went up in the HDL region and also in the LDL and VLDL regions. ApoE shifted from HDL to LDL and VLDL regions, while ApoA-IM remained located in the HDL region. On day 41, ApoE levels were 8-fold higher than on day 1, and FC, PL, and apoE resided mostly in LDL and VLDL regions. Drug infusion quickly decreased the endogenous cholesterol esterification rate. ABCA1-mediated cholesterol efflux on day 41 was markedly increased, whereas scavenger receptor type B1 (SRB1) and ABCG1-mediated effluxes were only weakly increased. Strong increase of FC is due to sustained stimulation of ABCA1-mediated efflux, and drop in HDL and formation of large apoE-rich particles are due to lack of LCAT activation.  相似文献   

14.
The reaction of nitric oxide synthase (NOS) with oxygen is fast and takes place within several steps, separated by ephemeral intermediates. The use of extreme experimental conditions, such as low temperature and high pressure, associated to rapid kinetic analysis, has proven to be a convenient tool to study this complex reaction. Stopped-flow experiments under high pressure indicated that oxygen binding occurred in more than one step. This was further corroborated by the detection of two short-lived oxy-compounds, differing in their spectral and electronic properties. Oxy-I resembles the ferrous oxygen complex known for cytochrome P450, whereas oxy-II appears to be locked in the superoxide form. Subzero temperature spectroscopy, together with an analytical separation method, revealed that the subsequent one-electron reduction of the oxygen complex is carried out by the NOS cofactor tetrahydrobiopterin (BH4). The low-temperature stabilized oxidation product of BH4 was found to be a protonated BH3 radical. Finally, work in the presence of a BH4 analog indicated that proton transfer to the activated oxygen complex is a second essential function of BH4.  相似文献   

15.
We propose a hypothesis that the T-cell receptor is a possible target of thymic hormones. We modelled the conformational dynamics of thymopentin and its structural variants in solution, as well as the interactions of these short peptides with the proposed molecular target. Thymopentin is a five-amino-acid fragment of the thymic hormone thymopoietin (residues 32 to 36) that reproduces the immunomodulatory activity of the complete hormone. Using molecular dynamics and flexible docking methods, we demonstrated high-affinity binding of thymopentin and its prospective mimetics with the T-cell receptor. The calculated biological activity spectra of thymopentin and its two promising modifications can be used in immunomodulatory activity screenings with live systems.  相似文献   

16.
By using molecular dynamics simulation technique we studied the changes occurring in membranes constructed of dipalmitoylphosphatidylcholine (DPPC) and cholesterol at 8:1 and 1:1 ratios. We tested two different initial arrangements of cholesterol molecules for a 1:1 ratio. The main difference between two initial structures is the average number of nearest-neighbor DPPC molecules around the cholesterol molecule. Our simulations were performed at constant temperature (T = 50 degrees C) and pressure (P = 0 atm). Durations of the runs were 2 ns. The structure of the DPPC/cholesterol membrane was characterized by calculating the order parameter profiles for the hydrocarbon chains, atom distributions, average number of gauche defects, and membrane dipole potentials. We found that adding cholesterol to membranes results in a condensing effect: the average area of membrane becomes smaller, hydrocarbon chains of DPPC have higher order, and the probability of gauche defects in DPPC tails is lower. Our results are in agreement with the data available from experiments.  相似文献   

17.
We have recently proposed a phase diagram for mixtures of porcine brain sphingomyelin (BSM), cholesterol (Chol), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) on the basis of kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin. Although that study indicated the existence of domains, phase separations in the micrometer scale have not been observed by fluorescence microscopy in BSM/Chol/POPC mixtures, though they have for some other sphingomyelins (SM). Here we examine the same BSM/Chol/POPC system by a combination of fluorescence resonance energy transfer (FRET) and Monte Carlo simulations. The results clearly demonstrate that domains are formed in this system. Comparison of the FRET experimental data with the computer simulations allows the estimate of lipid-lipid interaction Gibbs energies between SM/Chol, SM/POPC, and Chol/POPC. The latter two interactions are weakly repulsive, but the interaction between SM and Chol is favorable. Furthermore, those three unlike lipid interaction parameters between the three possible lipid pairs are sufficient for the existence of a closed loop in the ternary phase diagram, without the need to involve multibody interactions. The calculations also indicate that the largest POPC domains contain several thousand lipids, corresponding to linear sizes of the order of a few hundred nanometers.  相似文献   

18.
  • 1.1. Bullfrogs were maintained in air-saturated water at 4°C under an 8:16hr, light:dark, photoperiod for 50 days from December to February.
  • 2.2. Heart rates and mean arterial pressures from these submerged frogs remained stable throughout the entire period in the cold. The slow heart rates that were observed appeared to result from a combination of low temperature and submergence. No indication of torpor was observed in any of the animals.
  • 3.3. These findings demonstrate that the cardiovascular system of bullfrogs apparently retains normal regulatory function when these animals are maintained under temperature and photoperiod conditions analogous to those found during overwintering.
  相似文献   

19.
Model membranes composed of cholesterol plus one of two phosphatidylcholines (PC), each containing a saturated and a dienoic acyl chain, have been studied by differential scanning calorimetry. The gel to liquid-crystalline phase transition temperature of 1-palmitoyl-2-linoleoyl PC was -19.5 degrees C and that of 1-stearoyl-2-linoleoyl PC was -13.7 degrees C. The addition of cholesterol to the phosphatidylcholines in aqueous dispersion resulted in the progressive removal of the phase transition as observed by differential scanning calorimetry. Per mole of sterol in the membrane, cholesterol was more effective at reducing the enthalpy change of the phase transitions of these bilayers containing dienoic phosphatidylcholines than it is in eliminating the transition of membranes made with other phospholipids that contain more saturated chains. No transitions in membranes made with palmitoyl-linoleoyl PC or stearoyl-linoleoyl PC could be detected calorimetrically when 17 mol% cholesterol was present.  相似文献   

20.
Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple‐helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ~60‐80°C for hydrated samples. We report high temperature Raman spectra for freeze‐dried cartilage samples that show an increase in laser‐excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2O is retained within the freeze‐dried tissue. This is confirmed by thermogravimetric analysis that show 5‐7 wt% H2O remaining within freeze‐dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re‐hydration following recovery indicate that the capacity of the denatured collagen to re‐absorb water is reduced. Our results are important for revealing the presence of bound H2O within the collagen component of connective tissue even after freeze‐drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号