首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetrahydrobiopterin (BH(4)) is an essential cofactor of nitric oxide synthase that improves endothelial function in diabetics, smokers, and patients with hypercholesterolemia. Insulin resistance has been suggested as a contributing factor in the development of endothelial dysfunction via an abnormal pteridine metabolism. We hypothesized that BH(4) would restore flow-mediated vasodilation (FMD, endothelial-dependent vasodilation), which may affect insulin resistance in type 2 diabetic patients. Thirty-two subjects (12 type 2 diabetic subjects, 10 matched nondiabetic subjects, and 10 healthy unmatched subjects) underwent infusion of BH(4) or saline in a random crossover study. Insulin sensitivity index (S(I)) was measured by hyperinsulinemic isoglycemic clamp. FMD was measured using ultrasonography. BH(4) significantly increased S(I) in the type 2 diabetics [3.6 +/- 0.6 vs. 4.9 +/- 0.7 x 10(-4) dl.kg(-1).min(-1)/(microU/ml), P < 0.05], while having no effects in nondiabetics [8.9 +/- 1.1 vs. 9.0 +/- 0.9 x 10(-4) dl.kg(-1).min(-1)/(microU/ml), P = 0.92] or in healthy subjects [17.5 +/- 1.6 vs. 18 +/- 1.8 x 10(-4) dl.kg(-1).min(-1)/(microU/ml), P = 0.87]. BH(4) did not affect the relative changes in brachial artery diameter from baseline FMD (%) in type 2 diabetic subjects (2.3 +/- 0.8 vs. 1.8 +/- 1.0%, P = 0.42), nondiabetic subjects (5.3 +/- 1.1 vs. 6.6 +/- 0.9%, P = 0.32), or healthy subjects (11.9 +/- 0.6 vs. 11.0 +/- 1.0%, P = 0.48). In conclusion, BH(4) significantly increases insulin sensitivity in type 2 diabetic patients without any discernible improvement in endothelial function.  相似文献   

2.
In a recent study, we found a significant association between insulin resistance (IR) and disturbed flow-associated (endothelial-dependent) vasodilation in first-degree relatives of subjects with type 2 diabetes. However, the mechanisms linking insulin resistance and endothelial dysfunction (ED) have not been fully elucidated. Experimental data have pointed out that non-esterified fatty acids (NEFA) have a modulating effect on NO-synthase activity, and therefore on endothelial function. The aim of our study was to evaluate whether insulin resistance associated impaired NEFA suppression is present in subjects with ED. We examined 53 first-degree relatives (FDR) of patients with type 2 diabetes (32f, 21 m, mean age 35 years). Endothelial function was measured as flow-associated vasodilation (FAD%) of the brachial artery. Insulin sensitivity was evaluated with a standard hyperinsulinemic glucose clamp (insulin infusion rate of 1 mU/kg/min). While under fasting conditions, NEFA did not differ between groups with high or low FAD (0.415+/-0.033 vs. 0.394 +/- 0.040 mmol/l; p = n. s.), reduced FAD% was significantly associated with higher non-esterified fatty acids concentrations during steady state of the glucose clamp (0.072+/-0.022 vs. 0.039+/-0.016mmol/l; p=0.04). This association was independent of insulin levels under fasting conditions and during the glucose clamp. In conclusion, our results reveal a significant association between endothelial dysfunction and impaired non-esterified fatty acid suppression in insulin resistant subjects. As insulin resistance of lipolysis is a feature of the insulin resistance syndrome, these results suggest that elevated NEFA concentrations could play a role linking endothelial dysfunction and insulin resistance in vivo.  相似文献   

3.
Sulfonylureas (SU) with glucagon-like peptide-1 (GLP-1)-based therapy are an emerging therapeutic combination for type 2 diabetes. Prior human studies have hinted at endothelial effects of GLP-1 and SU. To study the endothelial effects of GLP-1 per se and to evaluate the modulatory effects, if any, of SU agents on GLP-1-induced changes in endothelial function, healthy, nondiabetic, normotensive, nonsmokers, age 18-50 yr with no family history of diabetes, were studied. Subjects were randomized to either placebo (n = 10), 10 mg of glyburide (n = 11), or 4 mg of glimepiride (n = 8) orally. Euglycemic somatostatin pancreatic clamp with replacement basal insulin, glucagon, and growth hormone was performed for 240 min. Forearm blood flow (FBF) was measured by venous occlusion plethysmography with graded brachial artery infusions of acetylcholine (Ach) and nitroprusside (NTP) before and after intravenous infusion of GLP-1. GLP-1 (preinfusion 3.4 +/- 0.2, postinfusion 25.5 +/- 2.8 pM) enhanced (P < 0.03) Ach-mediated vasodilatation (Delta+6.5 +/- 1.1 vs. Delta+9.1 +/- 1.2 ml.100 ml(-1).min(-1), change from baseline FBF) in those on placebo. However, in contrast, glyburide abolished GLP-1-induced Ach-mediated vasodilatation (Delta+11.7 +/- 2.0 vs. Delta+11.7 +/- 2.5 ml.100 ml(-1).min(-1)). On the other hand, glimepiride did not alter the ability of GLP-1 to enhance Ach-mediated vasodilatation (Delta+7.9 +/- 0.5 vs. Delta+10.2 +/- 1.3 ml.100 ml(-1).min(-1), P < 0.04). Neither GLP-1 nor SU altered NTP-induced vasodilatation. These data demonstrate that GLP-1 per se has direct beneficial effects on endothelium-dependent vasodilatation in humans that are differentially modulated by SU.  相似文献   

4.
Endothelial dysfunction reflects reduced nitric oxide (NO) bioavailability due to either reduced production, inactivation of NO, or reduced smooth muscle responsiveness. Oral methionine loading causes acute endothelial dysfunction in healthy subjects and provides a model in which to study mechanisms. Endothelial function was assessed using flow-mediated dilatation (FMD) of the brachial artery in humans. Three markers of oxidative stress were measured ex vivo in venous blood. NO responsiveness was assessed in vascular smooth muscle and platelets. Oral methionine loading induced endothelial dysfunction (FMD decreased from 2.8 +/- 0.8 to 0.3 +/- 0.3% with methionine and from 2.8 +/- 0.8 to 1.3 +/- 0.3% with placebo; P < 0.05). No significant changes in measures of plasma oxidative stress or in vascular or platelet sensitivity to submaximal doses of NO donors were detected. These data suggest that oxidative stress is not the mechanism of endothelial dysfunction after oral methionine loading. Furthermore, the preservation of vascular and platelet NO sensitivity makes a signal transduction abnormality unlikely.  相似文献   

5.
Insulin resistance is a risk factor for atherosclerosis and is associated with hyperinsulinemia, abnormal lipid profile, and hypertension. Whether hyperinsulinemia affects vascular function independent of insulin resistance or other metabolic risk factors is unknown. This investigation aimed to assess the effects of hyperinsulinemia on endothelial function in subjects with a spectrum of insulin sensitivity and lipid profile. Endothelium-dependent (flow-mediated dilation, FMD) and -independent (nitroglycerin) responses of the brachial artery were studied by high-resolution ultrasound before and during hyperinsulinemia (euglycemic clamp) in 25 normoglycemic, normotensive subjects. Participants were divided into an insulin-sensitive and an insulin-resistant subgroup based on their sensitivity index values, with a cutoff of 8, and into a normal-cholesterol and a high-cholesterol subgroup based on their total cholesterol levels, with a cutoff of 5.2 mmol/l (200 mg/dl). In the whole population, FMD was lower during hyperinsulinemia compared with baseline (2.3 +/- 0.6% vs. 6 +/- 0.6%; P < 0.001). Resting FMD was lower in the insulin-resistant subgroup compared with the insulin-sensitive subgroup (4.2 +/- 0.9% vs. 7.4 +/- 0.8%; P = 0.014) and in the high-cholesterol subjects compared with the normal-cholesterol subjects (4.4 +/- 0.7% vs. 8 +/- 0.7%; P = 0.002). Hyperinsulinemia decreased FMD in both the insulin-sensitive (from 7.4 +/- 0.8% to 3.6 +/- 0.4%; P < 0.001) and insulin-resistant (from 4.2% to 1.22%; P = 0.012) subgroups and in both the normal-cholesterol (from 8 +/- 0.7% to 3.9 +/- 0.4%; P < 0.001) and high-cholesterol (from 4.4 +/- 0.7% to 1.1 +/- 0.8%; P = 0.01) participants. Acute hyperinsulinemia impairs conduit vessel endothelial function independent of insulin sensitivity and lipid profile. Insulin may trigger endothelial dysfunction and promote atherosclerosis.  相似文献   

6.
Insulin resistance is associated with endothelial dysfunction. Because African-American women are more insulin-resistant than white women, it is assumed that African-American women have impaired endothelial function. However, racial differences in postprandial endothelial function have not been examined. In this study, we test the hypothesis that African-American women have impaired postprandial endothelial function compared with white women. Postprandial endothelial function following a breakfast (20% protein, 40% fat, and 40% carbohydrate) was evaluated in 36 (18 African-American women, 18 white women) age- and body mass index (BMI)-matched (age: 37 ± 11 yr; BMI: 30 ± 6 kg/m(2)) women. Endothelial function, defined by percent change in brachial artery flow-mediated dilation (FMD), was measured at 0, 2, 4, and 6 h following a meal. There were no significant differences between the groups in baseline FMD, total body fat, abdominal visceral fat, and fasting levels of glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, or serum estradiol. Although African-American women were less insulin-sensitive [insulin sensitivity index (mean ± SD): 3.6 ± 1.5 vs. 5.2 ± 2.6, P = 0.02], both fasting triglyceride (TG: 56 ± 37 vs. 97 ± 49 mg/dl, P = 0.007) and incremental TG area under the curve (AUC(0-6hr): 279 ± 190 vs. 492 ± 255 mg·dl(-1)·min(-1)·10(-2), P = 0.008) were lower in African-American than white women. Breakfast was associated with a significant increase in FMD in whites and African-Americans, and there was no significant difference in postprandial FMD between the groups (P > 0.1 for group × time interactions). Despite being insulin-resistant, postprandial endothelial function in African-American women was comparable to white women. These results imply that insulin sensitivity may not be an important determinant of racial differences in endothelial function.  相似文献   

7.
Advancing age is a major risk factor for coronary artery disease. Endothelial dysfunction accompanied by increased oxidative stress and inflammation with aging may predispose older arteries to greater ischemia-reperfusion (I/R) injury. Because coronary artery ischemia cannot be induced safely, the effects of age and habitual endurance exercise on endothelial I/R injury have not been determined in humans. Using the brachial artery as a surrogate model of the coronary arteries, endothelial function, assessed by brachial artery flow-mediated dilation (FMD), was measured before and after 20 min of continuous forearm occlusion in young sedentary (n = 10, 24 ± 2 yr) and middle-aged (n = 9, 48 ± 2 yr) sedentary adults to gain insight into the effects of primary aging on endothelial I/R injury. Young (n = 9, 25 ± 1 yr) and middle-aged endurance-trained (n = 9, 50 ± 2 yr) adults were also studied to determine whether habitual exercise provides protection from I/R injury. Fifteen minutes after ischemic injury, FMD decreased significantly by 37% in young sedentary, 35% in young endurance-trained, 68% in middle-aged sedentary, and 50% in middle-aged endurance-trained subjects. FMD returned to baseline levels within 30 min in young sedentary and endurance-trained subjects but remained depressed in middle-aged sedentary and endurance-trained subjects. Circulating markers of antioxidant capacity and inflammation were not related to FMD. In conclusion, advancing age is associated with a greater magnitude and delayed recovery from endothelial I/R injury in humans. Habitual endurance exercise may provide partial protection to the endothelium against this form of I/R injury with advancing age.  相似文献   

8.
9.
Assessment of flow-mediated dilation (FMD) after forearm ischemia is widely used as a noninvasive bioassay of stimulated nitric oxide (NO)-mediated conduit artery vasodilator function in vivo. Whether this stimulated endothelial NO function reflects basal endothelial NO function is unknown. To test this hypothesis, retrospective analysis of randomized crossover studies was undertaken in 17 subjects with Type 2 diabetes; 9 subjects undertook an exercise training or control period, whereas the remaining 8 subjects were administered an angiotensin II receptor blocker or placebo. FMD was assessed by using wall tracking of high-resolution brachial artery ultrasound images in response to reactive hyperemia. Resistance vessel basal endothelium-dependent NO function was assessed by using intrabrachial administration of NG-monomethyl-L-arginine (L-NMMA) and plethysmographic assessment of forearm blood flow (FBF). FMD was higher after intervention compared with control/placebo (6.15+/-0.53 vs. 3.81+/-0.72%, P<0.001). There were no significant changes in the FBF responses to L-NMMA. Regression analysis between FMD and L-NMMA responses at entry to the study revealed an insignificant correlation (r=-0.10, P=0.7), and improvements in FMD with the interventions were not associated with changes in the L-NMMA responses (r=-0.04, P=0.9). We conclude that conduit artery-stimulated endothelial NO function (FMD) does not reflect basal resistance vessel endothelial NO function in subjects with Type 2 diabetes.  相似文献   

10.
Attenuation of endothelium-derived nitric oxide (NO) synthesis is a hallmark of endothelial dysfunction. Early detection of this disorder may have therapeutic and prognostic implications. Plasma nitrite mirrors acute and chronic changes in endothelial NO-synthase activity. We hypothesized that local plasma nitrite concentration increases during reactive hyperemia of the forearm, reflecting endothelial function. In healthy subjects (n = 11) plasma nitrite and nitrate were determined at baseline and during reactive hyperemia of the forearm using reductive gas-phase chemiluminescence and flow-injection analysis, respectively. Endothelium-dependent dilation of the brachial artery was measured as flow-mediated dilation (FMD) using high-resolution ultrasound. Results were compared to patients with endothelial dysfunction as defined by reduced FMD (n = 11). Reactive hyperemia of the forearm increased local plasma nitrite concentration from 68 +/- 5 to 126 +/- 13 nmol/L (p < 0.01), whereas in endothelial dysfunction nitrite remained unaffected (116 +/- 12 to 104 +/- 10 nmol/L; n.s.), corresponding to nitrite reserves of 94 +/- 21 and -8 +/- 4%. This was accompanied by a significantly greater increase in brachial artery diameter (FMD: 8.5 +/- 0.4% vs 2.9 +/- 0.5%, for healthy subjects and endothelial dysfunction, respectively; p < 0.001). This observation suggests that nitrite changes reflect endothelial function. Assessment of local plasma nitrite during reactive hyperemia may open new avenues in the diagnosis of vascular function.  相似文献   

11.
AIMS/HYPOTHESIS: Since insulin secretion in response to exogenous gastric inhibitory polypeptide (GIP) is diminished not only in patients with type 2 diabetes, but also in their normal glucose-tolerant first-degree relatives, it was the aim to investigate the integrity of the entero-insular axis in such subjects. METHODS: Sixteen first-degree relatives of patients with type 2 diabetes (4 male, 12 female, age 50+/-12 years, BMI 26.1+/-3.8 kg/m(2)) and 10 matched healthy controls (negative family history, 6 male, 4 female, 45+/-13 years, 26.1+/-4.2 kg/m(2)) were examined with an oral glucose load (75 g) and an "isoglycaemic" intravenous glucose infusion. Blood was drawn over 240 min for plasma glucose (glucose oxidase), insulin, C-peptide, GIP and glucagon-like peptide 1 (GLP-1; specific immunoassays). RESULTS: The pattern of glucose concentrations could precisely be copied by the intravenous glucose infusion (p=0.99). Insulin secretion was stimulated significantly more by oral as compared to intravenous glucose in both groups (p<0.0001). The percent contribution of the incretin effect was similar in both groups (C-peptide: 61.9+/-5.4 vs. 64.4+/-5.8%; p=0.77; insulin: 74.2+/-3.3 vs. 75.8+/-4.9; p=0.97; in first-degree relatives and controls, respectively). The individual responses of GIP and GLP-1 secretion were significantly correlated with each other (p=0.0003). The individual secretion of both GIP and GLP-1 was identified as a strong predictor of the integrated incremental insulin secretory responses as well as of the incretin effect. CONCLUSION/INTERPRETATION: Despite a lower insulin secretory response to exogenous GIP, incretin effects are similar in first-degree relatives of patients with type 2 diabetes and control subjects. This may be the result of a B cell secretory defect that affects stimulation by oral and intravenous glucose to a similar degree. Nevertheless, endogenous secretion of GIP and GLP-1 is a major determinant of insulin secretion after oral glucose.  相似文献   

12.
It is well established that endothelial dysfunction is present in coronary artery disease (CAD), although few studies have determined the effect of training on peripheral conduit vessel function in patients with CAD. A randomized, crossover design determined the effect of 8 wk of predominantly lower limb, combined aerobic and resistance training, in 10 patients with treated CAD. Endothelium-dependent dilation of the brachial artery was determined, by using high-resolution vascular ultrasonography, from flow-mediated vasodilation (FMD) after ischemia. Endothelium-independent vasodilation was measured after administration of glyceryl trinitrate (GTN). Baseline function was compared with that of 10 control subjects. Compared with matched healthy control subjects, FMD and GTN responses were significantly impaired in the untrained CAD patients [3.0 +/- 0.8 (SE) vs. 5.8 +/- 0.8% and 14.5 +/- 1.9 vs. 20.4 +/- 1.5%, respectively; both P < 0.05]. Training significantly improved FMD in the CAD patients (from 3.0 +/- 0.8 to 5.7 +/- 1.1%; P < 0.05) but not responsiveness to GTN (14.5 +/- 1.9 vs. 12.1 +/- 1.4%; P = not significant). Exercise training improves endothelium-dependent conduit vessel dilation in subjects with CAD, and the effect, evident in the brachial artery, appears to be generalized rather than limited to vessels of exercising muscle beds. These results provide evidence for the benefit of exercise training, as an adjunct to routine therapy, in patients with a history of CAD.  相似文献   

13.
Flow-mediated dilation (FMD) has become a commonly applied approach for the assessment of vascular function and health, but methods used to calculate FMD differ between studies. For example, the baseline diameter used as a benchmark is sometimes assessed before cuff inflation, whereas others use the diameter during cuff inflation. Therefore, we compared the brachial artery diameter before and during cuff inflation and calculated the resulting FMD in healthy children (n=45; 10+/-1 yr), adults (n=31; 28+/-6 yr), and older subjects (n=22; 58+/-5 yr). Brachial artery FMD was examined after 5 min of distal ischemia. Diameter was determined from either 30 s before cuff inflation or from the last 30 s during cuff inflation. Edge detection and wall tracking of high resolution B-mode arterial ultrasound images was used to calculate conduit artery diameter. Brachial artery diameter during cuff inflation was significantly larger than before inflation in children (P=0.02) and adults (P<0.001) but not in older subjects (P=0.59). Accordingly, FMD values significantly differed in children (11.2+/-5.1% vs. 9.4+/-5.2%; P=0.02) and adults (7.3+/-3.2% vs. 4.6+/-3.3%; P<0.001) but not in older subjects (6.3+/-3.4% vs. 6.0+/-4.2%; P=0.77). When the diameter before cuff inflation was used, an age-dependent decline was evident in FMD, whereas FMD calculated using the diameter during inflation was associated with higher FMD values in older than younger adults. In summary, the inflation of the cuff significantly increases brachial artery diameter, which results in a lower FMD response. This effect was found to be age dependent, which emphasizes the importance of using appropriate methodology to calculate the FMD.  相似文献   

14.
The purpose of this study was to determine the dynamic characteristics of brachial artery dilation in response to step increases in shear stress [flow-mediated dilation (FMD)]. Brachial artery diameter (BAD) and mean blood velocity (MBV) (Doppler ultrasound) were obtained in 15 healthy subjects. Step increases in MBV at two shear stimulus magnitudes were investigated: large (L; maximal MBV attainable), and small (S; MBV at 50% of the large step). Increase in shear rate (estimate of shear stress: MBV/BAD) was 76.8 +/- 15.6 s(-1) for L and 41.4 +/- 8.7 s(-1) for S. The peak %FMD was 14.5 +/- 3.8% for L and 5.7 +/- 2.1% for S (P < 0.001). Both the L (all subjects) and the S step trials (12 of 15 subjects) elicited a biphasic diameter response with a fast initial phase (phase I) followed by a slower final phase. Relative contribution of phase I to total FMD when two phases occurred was not sensitive to shear rate magnitude (r(2) = 0.003, slope P = 0.775). Parameters quantifying the dynamics of the FMD response [time delay (TD), time constant (tau)] were also not sensitive to shear rate magnitude for both phases (phase I: TD r(2) = 0.03, slope P = 0.376, tau r(2) = 0.04, slope P = 0.261; final phase: TD r(2) = 0.07, slope P = 0.169, tau r(2) = 0.07, slope P = 0.996). These data support the existence of two distinct mechanisms, or sets of mechanisms, in the human conduit artery FMD response that are proportionally sensitive to shear stimulus magnitude and whose dynamic response is not sensitive to shear stimulus magnitude.  相似文献   

15.
Brachial artery flow-mediated dilation (FMD) is a strong predictor of future cardiovascular disease and is believed to represent a "barometer" of systemic endothelial health. Although a recent study [Padilla et al. Exp Biol Med (Maywood) 235: 1287-1291, 2010] in pigs confirmed a strong correlation between brachial and femoral artery endothelial function, it is unclear to what extent brachial artery FMD represents a systemic index of endothelial function in humans. We conducted a retrospective analysis of data from our laboratory to evaluate relationships between the upper (i.e., brachial artery) vs. lower limb (superficial femoral n = 75; popliteal artery n = 32) endothelium-dependent FMD and endothelium-independent glyceryl trinitrate (GTN)-mediated dilation in young, healthy individuals. We also examined the relationship between FMD assessed in both brachial arteries (n = 42). There was no correlation between brachial and superficial femoral artery FMD (r(2) = 0.008; P = 0.46) or between brachial and popliteal artery FMD (r(2) = 0.003; P = 0.78). However, a correlation was observed in FMD between both brachial arteries (r(2) = 0.34; P < 0.001). Brachial and superficial femoral artery GTN were modestly correlated (r(2) = 0.13; P = 0.007), but brachial and popliteal artery GTN responses were not (r(2) = 0.08; P = 0.11). Collectively, these data indicate that conduit artery vasodilator function in the upper limbs (of healthy humans) is not predictive of that in the lower limbs, whereas measurement of FMD in one arm appears to be predictive of FMD in the other. These data do not support the hypothesis that brachial artery FMD in healthy humans represents a systemic index of endothelial function.  相似文献   

16.
Previous work from our laboratory demonstrated that isometric handgrip (IHG) training improved local, endothelium-dependent vasodilation in medicated hypertensives [McGowan CL (PhD Thesis), 2006; McGowan et al. Physiologist 47: 285, 2004]. We investigated whether changes in the capacity of smooth muscle to dilate (regardless of endothelial factors) influenced this training-induced change, and we examined the acute vascular responses to a single bout of IHG. Seventeen subjects performed four 2-min unilateral IHG contractions at 30% of maximal voluntary effort, three times a week for 8 wk. Pre- and posttraining, brachial artery flow-mediated dilation (FMD, an index of endothelium-dependent vasodilation) and nitroglycerin-mediated maximal vasodilation (an index of endothelium-independent vasodilation) were measured in the exercised arm by using ultrasound before and immediately after acute IHG exercise. IHG training resulted in improved resting brachial FMD (P < 0.01) and no change in nitroglycerin-mediated maximal vasodilation. Pre- and posttraining, brachial artery FMD decreased following an acute bout of IHG exercise (normalized to peak shear rate, pre-, before IHG exercise: 0.01 +/- 0.002, after IHG exercise: 0.008 +/- 0.002%/s(-1); post-, before IHG exercise: 0.020 +/- 0.003, after IHG exercise: 0.010 +/- 0.003%/s(-1); P < 0.01). Posttraining, resting brachial artery FMD improved yet nitroglycerin-mediated maximal vasodilation was unchanged in persons medicated for hypertension. This suggests that the training-induced improvements in the resting brachial artery FMD were not due to underlying changes in the forearm vasculature. Acute IHG exercise attenuated brachial artery FMD, and although this impairment may be interpreted as hazardous to medicated hypertensives with already dysfunctional endothelium, the effects appear transient as repeated exposure to the IHG stimulus improved resting endothelium-dependent vasodilation.  相似文献   

17.
Aging is associated with a decline in vascular endothelial function, manifesting in part as impaired flow-mediated arterial dilation (FMD), but the underlying mechanisms are uncertain. Impaired FMD may be mediated in part by a decrease in synthesis of nitric oxide by endothelial nitric oxide synthase, and in clinical populations this has been attributed to competitive inhibition of l-arginine binding sites by asymmetric dimethylarginine (ADMA). If this mechanism is involved in the age-associated decline in FMD, increasing l-arginine concentration may swing the competitive balance in favor of l-arginine binding, restoring nitric oxide synthesis, and enhancing FMD in older humans. To test this hypothesis, we measured FMD (brachial ultrasound) in 10 younger (21 +/- 1 yr) and 12 older healthy men and women (60 +/- 2 yr) following infusion of vehicle or vehicle + l-arginine. Baseline FMD in the older subjects was only approximately 60% of that in the younger subjects (P = 0.002). l-Arginine did not significantly increase FMD in either group despite 23-fold (older) and 19-fold (younger) increases in plasma l-arginine concentrations (P < 0.0001 vs. control). Protein expression (immunofluorescence) in vascular endothelial cells showed that ADMA and the enzyme isoform that controls its degradation, dimethylarginine dimethylaminohydrolase II, were not different in the younger and older subjects. Endothelium-independent vasodilation (sublingual nitroglycerine) was not different between age groups or conditions. We conclude that acutely increasing plasma concentrations of l-arginine do not significantly improve brachial artery FMD in healthy older subjects and thus does not restore the age-associated loss of FMD. Together with the finding that endothelial cell ADMA protein expression was not increased in older adults, these findings suggest that competitive inhibition of l-arginine binding sites on endothelial nitric oxide synthase by ADMA is not an important mechanism contributing to impaired conduit artery endothelium-dependent dilation with aging in healthy humans.  相似文献   

18.
Glucose tolerance declines with age, resulting in a high prevalence of diabetes and impaired glucose tolerance (IGT) in the older population. Hyperglycemia per se can lead to impaired beta-cell function (glucose toxicity). We tested the role of glucose toxicity in age-related beta-cell dysfunction in older people (65 +/- 8 yr) with IGT treated with the alpha-glucosidase inhibitor acarbose (n = 14) or placebo (n = 13) for 6 wk in a randomized, double-blind study. Baseline and posttreatment studies included 1) an oral glucose tolerance test (OGTT), 2) 1-h postprandial glucose monitoring, 3) a frequently sampled intravenous glucose tolerance test (insulin sensitivity, or S(I)), and 4) glucose ramp clamp (insulin secretion rates, or ISR), in which a variable glucose infusion increases plasma glucose from 5 to 10 mM. The treatment groups had similar baseline body mass index; fasting, 2-h OGTT, and 1-h postprandial glucose levels; and S(I). In these carefully matched older people with IGT, both fasting (5.7 +/- 0.2 vs. 6.3 +/- 0.2 mM, P = 0.002) and 1-h postprandial glucose levels (6.9 +/- 0.3 vs. 8.2 +/- 0.4 mM, P = 0.02) were significantly lower in the acarbose than in the placebo group. Despite this reduction of chronic hyperglycemia in the acarbose vs. placebo group, measures of insulin secretion (ISR area under the curve: 728 +/- 55 vs. 835 +/- 81 pmol/kg, P = 0.9) and acute insulin response to intravenous glucose (329 +/- 67 vs. 301 +/- 54 pM, P = 0.4) remained unchanged and impaired. Thus short-term improvement of chronic hyperglycemia does not reverse beta-cell dysfunction in older people with IGT.  相似文献   

19.
The insulinotropic intestinal hormone GLP-1 is thought to exert one of its effects by direct action on the pancreatic beta-cell receptors. GLP-1 is rapidly degraded in plasma, such that only a small amount of the active form reaches the pancreas, making it questionable whether this amount is sufficient to produce a direct incretin effect. The aim of our study was to assess, in a dog model, the putative incretin action of GLP-1 acting directly on the beta-cell in the context of postprandial rises in GLP-1 and glucose. Conscious dogs were fed a high-fat, high-carbohydrate meal, and insulin response was measured. We also infused systemic glucose plus GLP-1, or glucose alone, to simulate the meal test values of these variables and measured insulin response. The results were as follows: during the meal, we measured a robust insulin response (52 +/- 9 to 136 +/- 14 pmol/l, P < 0.05 vs. basal) with increases in portal glucose and GLP-1 but only limited increases in systemic glucose (5.3 +/- 0.1 to 5.7 +/- 0.1 mmol/l, P = 0.1 vs. basal) and GLP-1 (6 +/- 0 to 9 +/- 1 pmol/l, P = 0.5 vs. basal). Exogenous infusion of systemic glucose and GLP-1 produced a moderate increase in insulin (43 +/- 5 to 84 +/- 15 pmol/l, 43% of the meal insulin). However, infusion of glucose alone, without GLP-1, produced a similar insulin response (37 +/- 6 to 82 +/- 14 pmol, 53% of the meal insulin, P = 0.7 vs. glucose and GLP-1 infusion). In conclusion, in dogs with postprandial rises in systemic glucose and GLP-1, the hormone might not have a direct insulinotropic effect and could regulate glycemia via indirect, portohepatic-initiated neural mechanisms.  相似文献   

20.
We sought to identify the relationship between shear stimuli and flow-mediated vasodilation and to determine whether small muscle mass exercise training could provoke limb-specific improvements in endothelial function in older subjects. In five young (22 +/- 1 yr old) and six old (71 +/- 2 yr old) subjects, ultrasound Doppler measurements were taken in the arm (brachial artery) and leg (deep and superficial femoral arteries) after suprasystolic cuff occlusion with and without ischemic exercise to evaluate flow-mediated dilation (FMD) in both limbs. Older subjects were reevaluated after 6 wk of single-leg knee extensor exercise training. Before the training, a significant FMD was observed in the arm of young (3 +/- 1%) but not old (1 +/- 1%) subjects, whereas a significant leg FMD was observed in both groups (5 +/- 1% old vs. 3 +/- 1% young). However, arm vasodilation was similar between young and old when normalized for shear rate, and cuff occlusion with superimposed handgrip exercise provoked additional shear, which proportionately improved the FMD response in both groups. Exercise training significantly improved arm FMD (5 +/- 1%), whereas leg FMD was unchanged. However, ischemic handgrip exercise did not provoke additional arm vasodilation after training, which may indicate an age-related limit to shear-induced vasodilation. Together, these data demonstrate that vascular reactivity is dependent on limb and degree of shear stimuli, challenging the convention of diminished endothelial function typically associated with age. Likewise, exercise training improved arm vasodilation, indicating some preservation of vascular plasticity with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号