首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Metabolism and distribution of xylem-fed ABA were investigated in leaves of maize (Zea mays) and Commelina communis when water stress and xylem pH manipulation were applied. 3H-ABA was fed to excised leaves via the transpiration stream. Water stress was applied through either a previous soil-drying before leaves were excised, or a quick dehydration after leaves were fed with ABA. Xylem-delivered ABA was metabolised rapidly in the leaves (half-life 0.7 h and 1.02 h for maize and Commelina respectively), but a previous soil-drying or a post-feeding dehydration significantly extended the half-life of fed ABA in both species. In the first few hours after ABA was fed into the detached leaves, percentages of applied ABA remaining unmodified were always higher in leaves which received water stress treatments than in control leaves. However the percentage decreased to below the control levels several hours later in leaves which received a previous soil-drying treatment prior to excision, but had then been rehydrated by the xylem-feeding process itself. One possible explanation for this could be a changed pattern of compartmentalisation for xylem-carried ABA. A post-feeding dehydration treatment also changed the distribution of xylem-fed ABA within the leaves: more ABA was found in the epidermis of Commelina leaves which had been dehydrated rapidly after ABA had been fed, compared to the controls. The levels of xylem-delivered ABA remaining unmodified increased as the pH of the feeding solution increased from 5 to 8. The results support the hypothesis that water stress and a putative stress-induced xylem pH change may modify stomatal sensitivity to ABA by changing the actual ABA content of the leaf epidermis.  相似文献   

3.
Seed dormancy develops latein embryogenesis after a period of potential prematuregermination and has been associated with levels ofabscisic acid (ABA) in, and sensitivity to, ABA ofembryos. In wheat (Triticum aestivum L.)embryos, there are two peaks in levels of ABA duringdevelopment: the first occurs 25 days afterpollination (DAP) and the second from 35 to 40 DAP. The first peak of ABA appears to be associated withthe development of the embryo's sensitivity to ABAsince such sensitivity was altered in seeds on earsthat were incubated in a solution of ABA from 15 and20 DAP. In the embryos of Kitakei wheat, a line thatexhibits dormancy, the second peak, at around 35 DAP,was more prolonged in comparison to Chihoku, anon-dormant line. The results support the proposedinvolvement of ABA in the formation and maintenance ofseed dormancy during middle and late embryogenesis. When developing embryos were incubated in water,embryonic ABA leaked out from the embryos, inparticular between 30 and 40 DAP. Prematuregermination observed between 30 and 40 DAP might berelated to such leakage of ABA from embryos.  相似文献   

4.
Abscisic acid (ABA) was shown to influence turgor pressure and growth in wheat (Triticum aestivum L.) roots. At a concentrations of 25 mmol·m-3, ABA increased the turgor pressure of cells located within 1 cm of the tip by up to 450 kPa. At 4 to 5 cm from the root tip this concentration of ABA reduced the turgor pressure of peripheral cells (epidermis and the first few cortical cell layers) to zero or close to zero while that of the inner cells was increased. Increases in sap osmolality were dependent on the concentration of ABA and the effect saturated at 5 mmol·m-3 ABA. The increase in osmolality took about 4 h and was partly the result of reducing-sugar accumulation. Levels of inorganic cations were not affected by ABA. Root growth was inhibited at ABA concentrations that caused a turgor-pressure increase. The results show that while ABA can affect root cell turgor pressures, this effect does not result in increased root growth.Abbreviation ABA abscisic acid  相似文献   

5.
MAP kinases have been linked to guard cell signalling. Arabidopsis thaliana MAP Kinase 3 (MPK3) is known to be activated by abscisic acid (ABA) and hydrogen peroxide (H(2)O(2)), which also control stomatal movements. We therefore studied the possible role of MPK3 in guard cell signalling through guard cell-specific antisense inhibition of MPK3 expression. Such transgenic plants contained reduced levels of MPK3 mRNA in the guard cells and displayed partial insensitivity to ABA in inhibition of stomatal opening, but responded normally to this hormone in stomatal closure. However, ABA-induced stomatal closure was reduced compared with controls when cytoplasmic alkalinization was prevented with sodium butyrate. MPK3 antisense plants were less sensitive to exogenous H(2)O(2), both in inhibition of stomatal opening and in promotion of stomatal closure, thus MPK3 is required for the signalling of this compound. ABA-induced H(2)O(2) synthesis was normal in these plants, indicating that MPK3 probably acts in signalling downstream of H(2)O(2). These results provide clear evidence for the important role of MPK3 in the perception of ABA and H(2)O(2) in guard cells.  相似文献   

6.
Abstract. Maize plants were grown in 1-m-long tubes of John Innes No. 2 potting compost. From the start of the experimental period, half of the plants were unwatered. Stomatal conductance of these plants was restricted 6 d after last watering and continued to decline thereafter. This was despite the fact that as a result of solute accumulation, unwatered plants showed consistently higher leaf turgors than well-watered plants. Leaf water potentials of unwatered plants were not significantly lower than those of plants that were watered well. Main seminal and nodal roots showed solute regulation in drying soil and continued to grow even in the driest soil, and plants growing in drying soil showed consistently higher root dry weights than did well-watered plants, water potentials and turgors of the tips of fine roots in the upper part of the column decreased as the soil dried. Soil drying below a water content of around 0–25 g cm−3 (a bulk soil water potential of between -0.2 and -0.3 MPa) resulted in a substantial increase in the ABA content of roots. As soil columns dried progressively from the top, ABA content increased in roots deeper and deeper in the soil. These responses suggest that ABA produced by dehydrating roots and which was subsequently transported to the shoots provided a sensitive indication of the degree of soil drying.  相似文献   

7.
Guard-cell signalling for hydrogen peroxide and abscisic acid   总被引:5,自引:0,他引:5  
Wang P  Song CP 《The New phytologist》2008,178(4):703-718
Guard cells can integrate and process multiple complex signals from the environment and respond by opening and closing stomata in order to adapt to the environmental signal. Over the past several years, considerable research progress has been made in our understanding of the role of reactive oxygen species (ROS) as essential signal molecules that mediate abscisic acid (ABA)-induced stomatal closure. In this review, we discuss hydrogen peroxide (H2O2) generation and signalling, H2O2-induced gene expression, crosstalk and the specificity between ABA and H2O2 signalling, and the cellular mechanism for ROS sensing in guard cells. This review focuses especially on the points of connection between ABA and H2O2 signalling in guard cells. The fundamental progress in understanding the role of ABA and ROS in guard cells will continue to provide a rational basis for biotechnological improvements in the development of drought-tolerant crop plants with improved water-use efficiency.  相似文献   

8.
9.
M. C. Astle  P. H. Rubery 《Planta》1985,166(2):252-258
The effects of methyl jasmonate and jasmonic acid on uptake of abscisic acid (ABA) by suspension-cultured runner-bean cells and subapical runner-bean root segments have been investigated. Increasing concentrations of methyl jasmonate inhibit ABA uptake by the cultured cells with a K i of 22±3 M. This is not due to cytoplasmic acidification or to effects on metabolism of ABA, and is not additive with inhibition of radioactive ABA uptake by nonradioactive ABA. Uptake of indol-3-yl acetic acid (IAA) is unaffected by methyl jasmonate. The maximum effect of nonradioactive ABA in inhibiting uptake of radioactive ABA, previously shown to reflect saturation of an ABA carrier, is generally greater than the effect of maximally inhibitory concentrations of methyl jasmonate. Similar results were obtained with root segments, but longer incubation times were necessary to observe inhibitory effects of methyl jasmonate. Demethylation of methyl jasmonate to jasmonic acid does not appear to be required since similar concentrations of jasmonic acid had no observable direct effect on ABA uptake other than that attributable to cytoplasmic acidification. Histidine reagents, a proton ionophore and acidic external pH all affect in parallel the inhibition by methyl jasmonate and nonradioactive ABA of uptake of radioactive ABA by the cultured cells. There is no effect of ABA or nonradioactive methyl jasmonate on uptake of radioactive methyl jasmonate by the cultured cells. It is proposed that methyl jasmonate interacts with the ABA carrier. Various models for this interaction are discussed.Abbreviations ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3-yl acetic acid  相似文献   

10.
11.
12.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   

13.
14.
How much ABA can be supplied by the roots is a key issue for modelling the ABA-mediated influence of drought on shoot physiology. We quantified accumulation rates of ABA ( S ABA) in maize roots that were detached from well-watered plants and dehydrated to various extents by air-drying. S ABA was estimated from changes in ABA content in root segments incubated at constant relative water content (RWC). Categories of root segments, differing in age and branching order, were compared (root branches, and nodal roots subdivided into root tips, subapical unbranched sections, and mature sections). All categories of roots accumulated ABA, including turgid and mature tissues containing no apex. S ABA measured in turgid roots changed with root age and among root categories. This variability was largely accounted for by differences in water content among different categories of turgid roots. The response of S ABA to changes in root water potential ( Ψ root) induced by dehydration was common to root tips, nodal roots and branches of several ages, while this was not the case if root dehydration was expressed in terms of RWC. Differences among root categories in the response of S ABA to RWC were due to different RWC values among categories at a given Ψ root, and not to differences in the response of S ABA to Ψ root.  相似文献   

15.
16.
17.
A. Chanson  P. E. Pilet 《Planta》1982,154(6):556-561
The tips of intact maize (cv. LG 11) roots, maintained vertically, were pretreated with a droplet of buffer solution or a bead of anion exchange resin, both containing [214-C]abscisic acid (ABA). A significant basipetal ABA movement was observed and two metabolites of ABA (possibly phaseic acid and dihydrophaseic acid) were found. ABA pretreatment enhanced the gravireaction of 10 mm apical root segments kept both in the dark and in the light. The possibility that ABA could be one of the endogenous growth inhibitors produced or released by the cap cells is discussed.Abbreviations ABA abscisic acid - 3,3-DGA 3,3-dimethyl-glutaric acid - DPA dihydrophaseic acid - PA phaseic acid - GCMS gas chromatography-mass spectrometry  相似文献   

18.
Increased leaf phosphorus (P) concentration improved the water-use efficiency (WUE) and drought tolerance of regularly defoliated white clover plants by decreasing the rate of daily transpiration per unit leaf area in dry soil. Night transpiration was around 17% of the total daily transpiration. The improved control of transpiration in the high-P plants was associated with an increased individual leaf area and WUE that apparently resulted from net photosynthetic assimilation rate being reduced less than the reductions in the transpiration (27% vs 58%). On the other hand, greater transpiration from low-P plants was associated with poor stomatal control of transpirational loss of water, less ABA in the leaves when exposed to dry soil, and thicker and smaller leaf size compared with high-P leaves. The leaf P concentration was positively related with leaf ABA, and negatively with transpiration rates, under dry conditions ( P < 0.001). However, leaf ABA was not closely related to the transpiration rate, suggesting that leaf P concentration has a greater influence than ABA on the transpiration rates.  相似文献   

19.
Freundl E  Steudle E  Hartung W 《Planta》2000,210(2):222-231
The exodermal layers that are formed in maize roots during aeroponic culture were investigated with respect to the radial transport of cis-abscisic acid (ABA). The decrease in root hydraulic conductivity (Lpr) of aeroponically grown roots was stimulated 1.5-fold by ABA (500 nM), reaching Lpr values of roots lacking an exodermis. Similar to water, the radial flow of ABA through roots (JABA) and ABA uptake into root tissue were reduced by a factor of about three as a result of the existence of an exodermis. Thus, due to the cooperation between water and solute transport the development of the ABA signal in the xylem was not affected. This resulted in unchanged reflection coeffcients for roots grown hydroponically and aeroponically. Despite the well-accepted barrier properties of exodermal layers, it is concluded that the endodermis was the more effective filter for ABA. Owing to concentration polarisation effects, ABA may accumulate in front of the endodermal layer, a process which, for both roots possessing and lacking an exodermis, would tend to increase solvent drag and hence ABA movement into the xylem sap at increased water flow (JVr). This may account for the higher ABA concentrations found in the xylem at greater pressure difference. Received: 26 January 1999 / Accepted: 26 May 1999  相似文献   

20.
Novel techniques were devised to explore the mechanisms mediating the adverse effects of compacted soil on plants. These included growing plants in: (i) profiles containing horizons differing in their degree of compaction and; (ii) split-pots in which the roots were divided between compartments containing moderately (1·4 g cm ? 3) and severely compacted (1·7 g cm ? 3) soil. Wild-type and ABA-deficient genotypes of barley were used to examine the role of abscisic acid (ABA) as a root-to-shoot signal. Shoot dry weight and leaf area were reduced and root : shoot ratio was increased relative to 1·4 g cm ? 3 control plants whenever plants of both genotypes encountered severely compacted horizons. In bartey cultivar Steptoe, stomatal conductance decreased within 4 d of the first roots encountering 1·7 g cm ? 3 soil and increased over a similar period when roots penetrated from 1·7 g cm ? 3 into 1·4 g cm ? 3 soil. Conductance was again reduced by a second 1·7 g cm ? 3 horizon. These responses were inversely correlated with xylem sap ABA concentration. No equivalent stomatal responses occurred in Az34 (ABA deficient genotype), in which the changes in xylem sap ABA were much smaller. When plants were grown in 1·7 : 1·4 g cm ? 3 split-pots, shoot growth was unaffected relative to 1·4 g cm ? 3 control plants in Steptoe, but was significantly reduced in Az34. Excision of the roots in compacted soil restored growth to the 1·4 g cm ? 3 control level in Az34. Stomatal conductance was reduced in the split-pot treatment of Steptoe, but returned to the 1·4 g cm ? 3 control level when the roots in compacted soil were excised. Xylem sap ABA concentration was initially higher than in 1·4 g cm ? 3 control plants but subsequently returned to the control level; no recovery occurred if the roots in compacted soil were left intact. Xylem sap ABA concentration in the split-pot treatment of Az34 was initially similar to plants grown in uniform 1·7 g cm ? 3 soil, but returned to the 1·4 g cm ? 3 control level when the roots in the compacted compartment were excised. These results clearly demonstrate the involvement of a root-sourced signal in mediating responses to compacted soil; the role of ABA in providing this signal and future applications of the compaction procedures reported here are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号