首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The appearance and in vivo phosphorylation of the 210 kDalton (kD) neurofilament protein (NF210K) in newborn rat brain, spinal cord, and sciatic nerve were invetigated. Electron microscopic examination of neurofilaments isolated from newborn rat brain and spinal cord demonstrated morphologically distinct filaments which contained cross-bridging side arms. Neurofilament proteins, phosphorylated in vivo, were separated by sodium dodecyl sulfate slab gel electrophoresis and were transferred from acrylamide gels to nitrocellulose sheets. The nitrocellulose sheets were treated with antiserum to the 70 kD, 145 kD and 210 kD neurofilament proteins by the immunoblot technique. The three neurofilament proteins were found to be present in newborn brain, spinal cord and sciatic nerve. The presence of NF210K in newborn rat brain was further confirmed by 2-dimensional gel electrophoresis followed by indentification of this protein by the immunoblot technique. Exposure of the immunostained nitrocellulose sheets to x-ray film revealed that the NF210K, NF145K, and NF70K proteins were phosphorylated in filaments prepared from newborn rat central and peripheral nervous systems. These results suggest that the synthesis and posttranslational modification of the neurofilament proteins may be synchronized or developmentally regulated. It is feasible that phosphorylation of the NF210K subunit may be a prerequisite for the formation of neurofilament cross-bridging elements which are necessary for radial growth of axons.  相似文献   

2.
Myelin basic protein and phosphatidylinositol-4-phosphate are phosphorylated in vitro by ATP and solubilized rat brain myelin. When both substrates are present together, the rate of phosphorylation of each is increased about eight-fold. It appears likely that the phosphate turnover of myelin basic protein and of phosphatidylinositol-4-phosphate are coupled in vivo.  相似文献   

3.
The immunoblot technique permits the visualization of proteins following their separation on acrylamide gels, transfer to cellulose nitrate sheets and subsequent staining with antiserum. We have utilized this technique to demonstrate the presence of four basic proteins in rat PNS myelin with molecular weights of 21K, 18K, 17K, and 14K. Similarly, we demonstrated the presence of two basic proteins in rabbit PNS myelin (molecular weights of 21K and 18K). Exposure of the immunostained cellulose nitrate strips to X-ray film revealed the phosphorylation of four and two basic proteins in rat and rabbit PNS myelin, respectively. These basic proteins were present in the CNS myelin of the two species and were also phosphorylated. Because of the sensitivity of the immunoblot technique, it was also possible for us to visualize the P2 protein in both rat and rabbit PNS myelin.  相似文献   

4.
Previous work has suggested that myelin basic proteins are phosphorylated prior to their appearance in the myelin sheath (Ulmer, J. B. and Braun, P. E. (1984) Dev. Neurosci. 6, 345-355). In order to corroborate this finding we have examined the phosphorylation of myelin basic proteins in rat brain cell cultures containing 14-17% oligodendrocytes. Incorporation of 32P into the 14-, 17-, 18.5-, and 21.5-kDa myelin basic proteins was observed in cells incubated with 32P at 7, 14, and 21 days in culture. Myelin basic proteins in 14-day cells incorporated 32P linearly until at least 120 min after the addition of isotope. The apparent half-life of myelin basic protein phosphate groups was determined to be approximately 80 min in pulse-chase experiments. However, this value may be an overestimation due to the presence of significant levels of acid-soluble radioactivity in the cells throughout the chase period. The presence of dibutyryl cAMP or 8-bromo-cAMP in the incubation medium substantially inhibited the incorporation of 32P into the myelin basic proteins at all time points studied. The presence of dibutyryl cAMP in the chase medium in pulse-chase experiments resulted in an increase in the turnover rate of [32P] phosphate in the myelin basic proteins. These results indicate that cAMP decreases the phosphorylation state of myelin basic proteins in oligodendrocytes by inhibiting the phosphorylation and/or stimulating the dephosphorylation of myelin basic proteins.  相似文献   

5.
The presence of a protein kinase capable of phosphorylating endogenous as well as exogenously added myelin basic proteins has been demonstrated in a myelin-like membrane fraction isolated from reaggregating and surface adhering, primary cultures of cells dissociated from embryonic mouse brain. Only the large and small components of myelin basic proteins were found to be phosphorylated when myelin-like membrane fraction was incubated with [-32P]ATP. The protein kinase endogenous to the myelin-like membrane fraction was mainly of the cyclic AMP independent type. There was very little cyclic AMP dependent or cyclic GMP dependent protein kinase activities in this myelin-like fraction. Although the myelin basic proteins were the only endogenous proteins phosphorylated, protein kinase of the myelin-like membrane was capable of catalyzing the phosphorylation of exogenous substrates, such as histones.  相似文献   

6.
Abstract: Proteins in peripheral nervous system and central nervous system myelin and homogenates of sciatic nerve and brain from young and adult mice and rats were characterized with affinity-purified anti-P2 and anti-myelin basic protein sera after electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels to nitrocellulose sheets. Using this method we have identified a component of rodent peripheral nervous system myelin as P2 protein. Peripheral nervous system myelin also showed the presence of four basic proteins in addition to P2 protein. These were found to be analogous to the 14, 17, 18.5, and 21.5K species found in the central nervous system myelin. A number of high-molecular-weight proteins were also detected with anti-myelin basic protein serum in peripheral nervous system, as well as central nervous system myelin. In addition, we report the presence of a high-molecular-weight P2 cross-reactive protein in rodent brain stem homogenates, but not in central nervous system myelin.  相似文献   

7.
Phosphorylation in vivo of four basic proteins of rat brain myelin   总被引:15,自引:3,他引:12       下载免费PDF全文
When rat brain myelin was examined by sodium dodecyl sulphate/polyacrylamideslab-gel electrophoresis followed by fluorography of the stained gel, it was found that a host of proteins of rat brain myelin were labelled 2, 4 and 24h after the intracerebral injection of H332PO4. Among those labelled were proteins migrating to the positions of myelin-associated glycoprotein, Wolfgram proteins, proteolipid protein, DM-20 and basic proteins. The four basic proteins with mol.wts. 21000, 18000 (large basic protein), 17000 and 14000 (small basic protein) were shown to be phosphorylated after electrophoresis in both acid-urea- and sodium dodecyl sulphate-containing gel systems followed by fluorography. The four basic proteins imparted bluish-green colour, after staining with Amido Black, which is characteristic of myelin basic proteins. The four basic proteins were purified to homogeneity. Fluorography of the purified basic proteins after re-electrophoresis revealed the presence of phosphorylated high-molecular-weight `polymers' associated with each basic protein. The amino acid compositions of the phosphorylated large basic protein and small basic proteins are compatible with the amino acid sequences. Proteins with mol.wts. 21000 and 17000 gave the expected amino acid composition of myelin basic proteins. Radiolabelled phosphoserine and phosphothreonine were identified after partial acid hydrolysis of the four purified basic proteins. The [32P]phosphate–protein bond in the basic protein was stable at an acidic pH but was readily hydrolysed at alkaline pH, as would be expected of phosphoester bonds involving both serine and threonine residues. Double-immunodiffusion analysis demonstrated that the four phosphorylated proteins showed complete homology when diffused against antiserum to a mixture of small and large basic proteins. Since the four basic proteins of rat brain myelin were phosphorylated both in vivo and in vitro it is postulated that the same protein kinase is responsible for their phosphorylation in both conditions.  相似文献   

8.
Cytoskeletal preparation obtained from synaptosome fractions of rat cerebrum contained the activity of kinase C, which phosphorylated 17K Mr protein endogenous to the preparation. The kinase C activity associated with the synaptosome cytoskeletons is greater in the cerebellum and hippocampus than in the cerebrum. The enhancement rates of phosphorylation of the 17K Mr protein were 293%, 544%, and 526% in the Triton X-100-insoluble fractions of synaptosomes prepared from cerebral cortex, hippocampus, and cerebellum, respectively. The 17K Mr protein was distinct from myelin basic protein (MBP) for the following reasons: 1) The electrophoretic mobility of the protein was slightly smaller than that of major MBP of rat in the polyacrylamide gel of 10–20% linear gradient, and the protein was not contained in the purified rat myelin. 2) The isoelectric point of the protein was in neutral range, whereas that of MBP was in alkaline one. 3) The 17K Mr protein did not cross-react with anti-MBP antibody. The protein was shown to be a major substrate contained in the cytoskeletal preparation of synaptosome obtained from cerebrum except for contaminating MBP. Only serine residue of the 17K Mr protein was phosphorylated by the kinase C endogenous to the preparation. The results suggest strongly that the synaptic role of protein kinase C through phosphorylation of the 17K Mr protein.Abbreviations used EGTA ethyleneglycol-bis(-aminoethyl ether) - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - MBP myelin basic protein - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SPM synaptic plasma membrane  相似文献   

9.
A calcium-activated neutral proteinase was purified from myelin of bovine brain white matter. Myelin purified in the presence of EDTA (2 mM) was homogenized in 50 mM Trisacetate buffer at pH 7.5, containing 4 mM EDTA, 1 mM NaN3, 5 mM -mercaptoethanol and 0.1% Triton X-100 for two hours. After centrifugation at 87,000g for 1 hour, the supernatant was subjected to purification through successive column chromatography as follows: i) DEAE-cellulose, ii) Ultrogel (AC-34) filtration, iii) Phenyl-Sepharose, iv) a second DEAE-cellulose. The enzyme activity was assayed using azocasein as substrate. The myelin enzyme was purified 2072-fold and SDS-PAGE analysis of the purified enzyme revealed a major subunit of 72–76 K. The enzyme was inhibited by iodoacetate (1 mM), leupeptin (1 mM), E-64C (1.6 mM), EGTA (1 mM), antipain (2 mM) and endogenous inhibitor calpastatin (2 g). It required 0.8 mM Ca2+ for half-maximal activation and 5 mM Ca2+ for optimal activation. Mg2+ (5 mM) was ineffective while Zn2+ and Hg2+ were inhibitory. The pH optimum was ranged from 7.5–8.5. Treatment of myelin with Triton X-100 increased the enzyme activity by 10-fold suggesting it is membrane bound whereas the purufied enzyme was not activated by Triton X-100 treatment. The presence of CANP in myelin may mediate the turnover of myelin proteins and myelin breakdown in degenerative brain diseases.  相似文献   

10.
Developmental regulation of myelin basic protein expression in mouse brain   总被引:25,自引:0,他引:25  
Developmental regulation of myelin basic protein expression in mouse brain has been examined by comparing the myelin basic protein coding potential of mRNA in vitro with the accumulation of myelin basic protein-related polypeptides in vivo. In vitro translation of mRNA isolated from mouse brain generated eight myelin basic protein-related polypeptides with apparent molecular weights of 34K, 30K, 29K, 26K, 21.5K, 18.5K, 17K, and 14K. A similar set of eight myelin basic protein-related polypeptides with corresponding molecular weights was identified in vivo when total brain proteins were analyzed by immunoblotting. Each of the myelin basic protein-related polypeptides shows a characteristic developmental profile in terms of mRNA level and rate of accumulation implying a complex developmental program of myelin basic protein gene expression with regulation and modulation at several different biosynthetic levels.  相似文献   

11.
Abstract— The phosphorylation of endogenous proteins occurring in the myelin of rat brain was examined using the method of sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Two myelin basic proteins and at least five more proteins were phosphorylated after incubation of myelin fraction in the presence of ATP + Mg2+. The apparent molecular weights of the proteins other than the myelin basic proteins were 120,000, 76,000, 60,000, 41,000 and 38,000, respectively. The proteins of mol wt 60,000. 41,000 and 38,000 were extracted by treatment with hydrochloric acid, whereas those of mol wt 120,000 and 76,000 were insoluble in hydrochloric acid and chloroform-methanol. Folch-Lees proteolipid protein was not found to be phosphorylated under the conditions studied. The endogenous phosphorylation of the proteins was not stimulated by adenosine 3',5'-monophosphate.  相似文献   

12.
Phosphorylation of some membrane-bound proteins in the mitochondria of rat liver and brain is regulated by Ca2+ and cAMP acting as secondary messengers. These proteins are the main myelin components: 46 kDa 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP) and two isoforms of the myelin basic protein (MBP) with molecular weights of 17 and 21.5 kDa, which we have identified previously and found outside myelin in rat brain mitochondria. The phosphorylation level of CNP and both MBP isoforms increases when the mitochondrial permeability transition pore (mPTP) is opened. It is known that protein kinases A and C in heart mitochondria are directly bound to mPTP regulator proteins and are able to modulate the pore function. It is shown in this study that the inhibitors of protein kinases A (H-89) and C (staurosporin, Go 6976, and GF 109203 X) decrease the phosphorylation level of CNP and two MBP isoforms allowing us to assume that they are the targets of the signaling protein kinases A and C.  相似文献   

13.
We examined the possibility that the peroxidative damage to central nervous system myelin produced by reactive oxygen species (ROS), could modify the susceptibility of its proteins to the proteolytic action of proteases such as trypsin and subtilisin. Purified myelin membranes obtained from adult rat brains were in vitro peroxidized by two non-enzymatic systems: Fe3+ plus ascorbic acid and Cu2+ plus hydrogen peroxide. Myelin proteins were severely affected by peroxidation. There was an increase in the amount of carbonyl groups (CO), accompanied by and enhanced susceptibility to degradation by trypsin and subtilisin of myelin basic proteins (MBP) and of the major proteolipid protein (PLP). The effect upon the degradation of myelin protein is a possible consequence of the appearance in the structure of myelin proteins of peroxidative modifications that contribute to the recognition by proteolytic enzymes. This hypothesis is supported by the fact that if peroxidation of myelin membranes is done in the presence of EDTA, both CO formation and increased sensitivity to enzymatic breakdown disappear. These results suggest that the appearance of abnormal post-translational modifications in the myelin membrane produced by peroxidation could constitute a putative mechanism of modulating the capacity of myelin proteins to be metabolized by proteases.  相似文献   

14.
Myelin basic protein serves as a convenient substrate for detection of a 44 kDa protein-serine/threonine kinase (p44mpk) that is activated near the time of germinal vesicle breakdown in maturing echinoderm and amphibian oocytes. In vitro phosphorylation by purified p44mpk from sea star oocytes was primarily on threonine residues on a single tryptic peptide of bovine brain myelin basic protein. Amino acid composition analysis of the isolated posphopeptide revealed that it was rich in proline residues. Automated solid-phase sequencing by Edman degradation identified the major site as Thr-97 in the sequence NIVTPRTPPPSQGK, which corresponds to residues 91-104 in bovine brain myelin basic protein. Thr-94 was also phosphorylated by p44mpk to a very minor extent.  相似文献   

15.
Abstract: Studies on the synthesis of the four immunologically related mouse myelin basic proteins (MBPs) were carried out to determine if these proteins were metabolically related. Two in vitro systems were used: (a) a homologous brain system consisting of free polysomes, pH 5 enzymes, and initiation factors; and (b) a reticulocyte lysate system directed with mRNA and supplemented with brain factors. Incorporation of [35S]methionine into the four MBPs (14K, 17K, 18.5K, and 21.5K) was detected by immunoprecipitation of the in vitro products of synthesis followed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The four MBPs were identified by cross-reactivity with purified anti-MBP antibodies and their apparent molecular weights in SDS gels. Synthesis of all four proteins was detected in both systems soon after the incubations were begun. The kinetics of the labeling of the proteins showed no evidence of a precursor-product relationship (i.e., 21.5K→ 18.5K; 17K → 14K) in either system. Inhibition studies with puromycin and "chase" experiments with unlabeled methionine demonstrated that neither system contained posttranslational "processing" activity. Thus, the 21.5K and 17K proteins were not being processed into the 18.5K and 14K MBPs by either . in vitro system. Detection of the synthesis of all four proteins in the reticulocyte system programmed with brain mRNA indicates that the four proteins are probably coded for by separate mRNAs. This conclusion was supported by studies using polyribosomes separated into different size classes, which suggest that the mRNAs for the four proteins may be translated on proteins of differing size class. It is proposed, therefore, that the four MBPs are the primary translation products of independent brain mRNAs and are not metabolically related.  相似文献   

16.
2,3-cyclic nucleotide 3-phosphohydrolase (CNP) was phosphorylated in vivo, in brain slices and in a cell free system. Phosphoamino acid analysis of immunoprecipitated CNP labeled in vivo and in brain slices revealed phosphorylation of phosphoserine (94%) and phosphothreonine (5%) residues. Phosphorylation of CNP increased by 3-fold after brain slices were incubated with forskolin. Similarly, incubation of isolated myelin with [-32]ATP with cAMP (5 M) and cAMP (5 M) + catalytic unit of cAMP dependent protein kinase dramatically increased CNP2 phosphorylation by 4- and 6-fold, respectively. It is feasible that CNP2 was predominantly phosphorylated on serine and/or threonine residues of the amino terminal peptide of CNP2, and this phosphorylation was catalyzed by protein kinase A. Phosphorylation of CNP1 and CNP2 increased 2-fold by incubating brain slices with phorbol ester. Forskolin and phorbol ester increased the phosphorylation of single, but distinct, CNP peptides. We present the first biochemical evidence that CNP2, on a protein mass basis, is far more heavily phosphorylated than CNP1, suggesting there are more phosphorylation sites on CNP2 than CNP1 and that at least one site is located on the 20-amino acid terminus of CNP2 and that is is likely a PKA site.  相似文献   

17.
Polypeptide composition and endogenous phosphorylation were investigated in the subfractions of rat brain myelin isolated by either discontinuous or continuous sucrose density gradient centrifugation of myelin. Similarly, a myelin-like membrane fraction (SN4) was also studied. Observations were made that strongly indicated the presence of a calcium-stimulated protein kinase in a highly purified myelin preparation and which exclusively phosphorylated myelin basic proteins of the membrane preparation. Adenosine cyclic 3',5'-phosphate (cAMP) stimulated kinase on the other hand was found to be considerably enriched in the myelin-like membrane fraction. Although this latter enzyme is also capable of phosphorylating the basic proteins, its effect was at least 5 times weaker compared to the calcium-stimulated myelin protein kinase. Within the gradient subfractions there appeared a close relation between the amount of basic proteins and their calcium-stimulated phosphorylation; a similar relationship, however, was not obtained in the case of cAMP-dependent phosphorylation of myelin basic proteins. The former (i.e., Ca2+-stimulated phosphorylation) was found to require a protein factor that functionally resembled calmodulin. The results thus raises an interesting possibility of the presence of calmodulin-like proteins and a calcium-stimulated protein kinase in adult myelin membrane from mammalian brain, both of which have been hitherto unrecognized constituents of myelin membranes.  相似文献   

18.
It has been suggested that phosphorylation of myelin basic protein (MBP) in CNS is catalyzed by protein kinase C (PKC). In order to demonstrate that PKC in the myelin phosphorylates MBP, PKC was partially purified from rat CNS myelin by solubilization with Triton X-100 followed by a DEAE-cellulose column. MBP and histone III-S were phosphorylated in the presence of Ca2+ and phospholipid by rat myelin PKC. High voltage electrophoresis revealed that the phosphoamino acids in MBP by this kinase was serine residue, which is known to be the amino acid phosphorylated by PKC. The activity of PKC extracted from myelin was inhibited by the addition of psychosine to the incubation mixture. To confirm the presence of PKC molecule and to identify the isoform of PKC in the myelin, the solubilized myelin fraction was applied on SDS-PAGE, transferred to a nitrocellulose sheet and stained with anti-PKC monoclonal antibodies. Rat CNS myelin contained the PKC of about 80 kDa (intact PKC), and no proteolytic fragments were observed. PKC isozymes in myelin were type II and III. A developmental study from 14 to 42 postnatal days showed that PKC activity in CNS myelin seemed to parallel the deposition of myelin protein.  相似文献   

19.
Myelin isolated from goldfish brain shows a multilamellar structure with a major dense line and two intraperiod lines. Sodium dodecyl sulfate gel electrophoresis revealed that the protein profile of goldfish brain myelin is distinctly different from that of rat brain myelin. No protein migrating to the position of proteolipid protein or DM-20 was seen in goldfish myelin. Goldfish acclimated to 5 degrees, 15 degrees, and 30 degrees C showed no qualitative differences in myelin proteins. The 13.5 kD protein in goldfish brain myelin and brain homogenate was intensely immunostained with the antiserum to human basic protein by the immunoblot technique. In contrast, none of the proteins of goldfish myelin were immunostained with antiproteolipid protein serum; however, both proteolipid protein and DM-20 of rat brain myelin were immunostained. The significance of the synthesis of myelin proteins by astrocytes in the goldfish brain is discussed.  相似文献   

20.
The cerebral cortex from adult rats was separated into several subcellular fractions by using established methods of differential and sucrose density gradient centrifugation. Aliquots from each fraction were incubated with -32P-ATP, in the presence and absence of adenosine 3,5-monophosphate (cyclic AMP), and its protein constituents were separated by means of SDS-slab gel electrophoresis. Fractions containing nuclei, synaptosomes, myelin, microsomes, and soluble proteins each showed a characteristic pattern of protein staining and of endogenously phosphorylated proteins detected by autoradiography of the gels. Cyclic AMP-stimulated phosphorylation of proteins with MW 78K and 84K can serve as markers for membranes of synaptic origin, while cyclic AMP-independent phosphorylation of low-molecular-weight proteins (15K–20K) is characteristic of myelin. The finding of different phosphoproteins in various subcellular fractions may be related to the diversity of cellular functions known to be regulated by phosphorylative activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号