首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable α-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

3.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable alpha-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

4.
Alpha-Hemolysin is an extracellular protein toxin (107 kDa) produced by some pathogenic strains of Escherichia coli. Although stable in aqueous medium, it can bind to lipid bilayers and produce membrane disruption in model and cell membranes. Previous studies had shown that toxin binding to the bilayer did not always lead to membrane lysis. In this paper, we find that alpha-hemolysin may bind the membranes in at least two ways, a reversible adsorption and an irreversible insertion. Reversibility is detected by the ability of liposome-bound toxin to induce hemolysis of added horse erythrocytes; insertion is accompanied by an increase in the protein intrinsic fluorescence. Toxin insertion does not necessarily lead to membrane lysis. Studies of alpha-hemolysin insertion into bilayers formed from a variety of single phospholipids, or binary mixtures of phospholipids, or of phospholipid and cholesterol, reveal that irreversible insertion is favored by fluid over gel states, by low over high cholesterol concentrations, by disordered liquid phases over gel or ordered liquid phases, and by gel over ordered liquid phases. These results are relevant to the mechanism of action of alpha-hemolysin and provide new insights into the membrane insertion of large proteins.  相似文献   

5.
T Wieprecht  M Beyermann  J Seelig 《Biochemistry》1999,38(32):10377-10387
Magainins are positively charged amphiphatic peptides which permeabilize cell membranes and display antimicrobial activity. They are usually thought to bind specifically to anionic lipids, and binding studies have been performed almost exclusively with negatively charged membranes. Here we demonstrate that binding of magainins to neutral membranes, a reaction which is difficult to assess with spectroscopic means, can be followed with high accuracy using isothermal titration calorimetry. The binding mechanism can be described by a surface partition equilibrium after correcting for electrostatic repulsion by means of the Gouy-Chapman theory. Unusual thermodynamic parameters are observed for the binding process. (i) The three magainin analogues that were investigated bind to neutral membranes with large exothermic reaction enthalpies DeltaH of -15 to -18 kcal/mol (at 30 degrees C). (ii) The reaction enthalpies increase with increasing temperature, leading to a large positive heat capacity DeltaC(p) of approximately 130 cal mol(-)(1) K(-)(1) (at 25 degrees C). (iii) The Gibbs free energies of binding DeltaG are between -6.4 and -8.6 kcal/mol, resulting in a large negative binding entropy DeltaS. The binding of magainin to small unilamellar vesicles is hence an enthalpy-driven reaction. The negative DeltaH and DeltaS and the large positive DeltaC(p) contradict the conventional understanding of the hydrophobic effect. CD experiments reveal that the membrane-bound fraction of magainin is approximately 80% helical at 8 degrees C, decreasing to approximately 60% at 45 degrees C. Since the random coil --> alpha-helix transition in aqueous solution is known to be an exothermic process, the same process occurring at the membrane surface is shown to account for up to 65% of the measured reaction enthalpy. In addition to membrane-facilitated helix formation, the second main driving force for membrane binding is the insertion of the nonpolar amino acid side chains into the lipid bilayer. It also contributes a negative DeltaH and follows the pattern for the nonclassical hydrophobic effect. Addition of cholesterol drastically reduces the extent of peptide binding and reveals an enthalpy-entropy compensation mechanism. Membrane permeability was measured with a dye assay and correlated with the extent of peptide binding. The level of dye efflux is linearly related to the amount of surface-bound peptide and can be traced back to a membrane perturbation effect.  相似文献   

6.
While antimicrobial and cytolytic peptides exert their effects on cells largely by interacting with the lipid bilayers of their membranes, the influence of the cell membrane lipid composition on the specificity of these peptides towards a given organism is not yet understood. The lack of experimental model systems that mimic the complexity of natural cell membranes has hampered efforts to establish a direct correlation between the induced conformation of these peptides upon binding to cell membranes and their biological specificities. Nevertheless, studies using model membranes reconstituted from lipids and a few membrane-associated proteins, combined with spectroscopic techniques (i.e. circular dichroism, fluorescence spectroscopy, Fourier transform infra red spectroscopy, etc.), have provided information on specific structure-function relationships of peptide-membrane interactions at the molecular level. Reversed phase-high performance chromatography (RP-HPLC) and surface plasmon resonance (SPR) are emerging techniques for the study of the dynamics of the interactions between cytolytic and antimicrobial peptides and lipid surfaces. Thus, the immobilization of lipid moieties onto RP-HPLC sorbent now allows the investigation of peptide conformational transition upon interaction with membrane surfaces, while SPR allows the observation of the time course of peptide binding to membrane surfaces. Such studies have clearly demonstrated the complexity of peptide-membrane interactions in terms of the mutual changes in peptide binding, conformation, orientation, and lipid organization, and have, to a certain extent, allowed correlations to be drawn between peptide conformational properties and lytic activity.  相似文献   

7.
The mechanisms underlying antimicrobial and anti-endotoxic effects were investigated for a series of structurally related peptides derived from the C-terminal region of S1 peptidases. For this purpose, results on bacterial killing were compared to those on peptide-induced liposome leakage, and to ellipsometry and dual polarization interferometry results on peptide binding to, and disordering of, supported lipid bilayers. Furthermore, the ability of these peptides to block endotoxic effects caused by bacterial lipopolysaccharide (LPS), monitored through NO production in macrophages, was compared to the binding of these peptides to LPS, and to secondary structure formation in the peptide/LPS complex. Bacteria killing, occurring through peptide-induced membrane lysis, was found to correlate with liposome rupture, and with the extent of peptide binding to the lipid membrane, no adsorption threshold for peptide insertion being observed. Membrane and LPS binding was found to depend on peptide net charge, illustrated by LPS binding increasing with increasing peptide charge, and peptides with net negative charge being unable to lyse membranes, kill bacteria, and block LPS-induced endotoxic effect. These effects were, however, also influenced by peptide hydrophobicity. LPS binding was furthermore demonstrated to be necessary, but not sufficient, for anti-endotoxic effect of these peptides. Circular dichroism spectroscopy showed that pronounced helix formation occurs in peptide/LPS complexes for all peptides displaying anti-endotoxic effect, hence potentially linked to this functionality. Similarly, ordered secondary structure formation was correlated to membrane binding, lysis, and antimicrobial activity of these peptides. Finally, preferential binding of these peptides to LPS over the lipid membrane was demonstrated.  相似文献   

8.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

9.
This review discusses main features of transmembrane (TM) proteins which distinguish them from water‐soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co‐translational and post‐translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large‐scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen‐bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side‐chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding.  相似文献   

10.
The membrane insertion behavior of two peptides, Magainin2 and M2δ, was investigated by applying the Monte Carlo simulation technique to a theoretical model. The model included many novel aspects, such as a new semi-empirical lipid bilayer model and a new set of semi-empirical transfer energies, which reproduced the experimental insertion behavior of Magainin2 and M2δ without parameter fitting. Additionally, we have taken into account diminished internal (intramolecular) hydrogen bonding at the N- and C-termini of helical peptides. All simulations were carried out at 305 K, above the membrane thermal phase transition temperature, and at pH 7.0. The peptide equilibrium conformations are discussed for a range of bilayers with tail polarities varying from octanol-like to alkane-like. Probability distributions of the individual amino-acid-residue positions show the dynamic nature of these equilibrium conformations. Two different insertion mechanisms for M2δ, and a translocation mechanism for Magainin2, are described. A study of the effect of bilayer thickness on M2δ insertion suggests a critical thickness above which insertion is unfavorable. Additionally, we did not need to use an orientational potential or array of hard cylinders to persuade M2δ to insert perpendicular to the membrane surface. Instead, we found that diminished internal hydrogen bonding in the helical conformation anchored the termini in the headgroups and resulted in a nearly perpendicular orientation.  相似文献   

11.
Li Y  Han X  Tamm LK 《Biochemistry》2003,42(23):7245-7251
The fusion peptides of viral membrane fusion proteins play a key role in the mechanism of viral spike glycoprotein mediated membrane fusion. These peptides insert into the lipid bilayers of cellular target membranes where they adopt mostly helical secondary structures. To better understand how membranes may be converted to high-energy intermediates during fusion, it is of interest to know how much energy, enthalpy and entropy, is provided by the insertion of fusion peptides into lipid bilayers. Here, we describe a detailed thermodynamic analysis of the binding of analogues of the influenza hemagglutinin fusion peptide of different lengths and amino acid compositions. In small unilamellar vesicles, the interaction of these peptides with lipid bilayers is driven by enthalpy (-16.5 kcal/mol) and opposed by entropy (-30 cal mol(-1) K(-1)). Most of the driving force (deltaG = -7.6 kcal/mol) comes from the enthalpy of peptide insertion deep into the lipid bilayer. Enthalpic gains and entropic losses of peptide folding in the lipid bilayer cancel to a large extent and account for only about 40% of the total binding free energy. The major folding event occurs in the N-terminal segment of the fusion peptide. The C-terminal segment mainly serves to drive the N-terminus deep into the membrane. The fusion-defective mutations G1S, which causes hemifusion, and particularly G1V, which blocks fusion, have major structural and thermodynamic consequences on the insertion of fusion peptides into lipid bilayers. The magnitudes of the enthalpies and entropies of binding of these mutant peptides are reduced, their helix contents are reduced, but their energies of self-association at the membrane surface are increased compared to the wild-type fusion peptide.  相似文献   

12.
We have performed molecular dynamics simulations of the interactions of two alpha-helical anti-microbial peptides, magainin2 and its synthetic analog of MSI-78, with palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayers. We used various initial positions and orientations of the peptide with respect to the lipid bilayer, including a surface-bound state parallel to the interface, a trans-membrane state, and a partially inserted state. Our 20 ns long simulations show that both magainin2 and MSI-78 are most stable in the lipid environment, with the peptide destabilized to different extents in both aqueous and lipid/water interfacial environments. We found that there are strong specific interactions between the lysine residues of the peptides and the lipid head-group regions. MSI-78, owing to its large number of lysines, shows better binding characteristics and overall stability when compared to magainin2. We also find that both peptides destabilize the bilayer environment, as observed by the increase in lipid tail disorder and the induction of local curvature on the lipid head-groups by the peptides. From all the simulations, we conclude that the hydrogen bonding interactions between the lysines of the peptides and the oxygens of the polar lipid head-groups are the strongest and determine the overall peptide binding characteristics to the lipids.  相似文献   

13.
Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied to evaluate the effect of α-chirality in the β-peptoid residues and the presence of guanidinium groups in the α-amino acid residues on membrane interaction. The molecular properties of the peptidomimetics in solution (surface and intramolecular hydrogen bonding, aqueous diffusion rate and molecular size) were studied along with their adsorption to lipid bilayers, cellular uptake, and toxicity. The surface hydrogen bonding ability of the peptidomimetics reflected their adsorbed amounts onto lipid bilayers as well as with their cellular uptake, indicating the importance of hydrogen bonding for their membrane interaction and cellular uptake. Ellipsometry studies further demonstrated that the presence of chiral centers in the β-peptoid residues promotes a higher adsorption to anionic lipid bilayers, whereas circular dichroism results showed that α-chirality influences their overall mean residue ellipticity. The presence of guanidinium groups and α-chiral β-peptoid residues was also found to have a significant positive effect on uptake in living cells. Together, the findings provide an improved understanding on the behavior of cell-penetrating peptidomimetics in the presence of lipid bilayers and live cells.  相似文献   

14.
The lipid monolayer model membrane is useful for studying the parameters responsible for protein and peptide membrane binding. Different approaches have been used to determine the extent of protein and peptide binding to lipid monolayers. This review focuses on the use of the “maximum insertion pressure” (MIP) to estimate the extent of protein and peptide penetration in lipid monolayers. The MIP data obtained with different proteins and peptides have been reviewed and discussed which allowed to draw conclusions on the parameters modulating the monolayer binding of proteins and peptides. In particular, secondary structure components such as amphipathic α-helices of proteins and peptides as well as electrostatic interactions play important roles in monolayer binding. The MIPs have been compared to the estimated lateral pressure of biomembranes which allowed to evaluate the possible association between proteins or peptides with natural membranes. For example, the MIP of a membrane-anchored protein with a glycosylphosphatidylinositol (GPI) was found to be far below the estimated lateral pressure of biomembranes. This allowed us to conclude that this protein is probably unable to penetrate the membrane and should thus be hanged at the membrane surface by use of its GPI lipid anchor. Moreover, the values of MIP obtained with myristoylated and non-myristoylated forms of calcineurin suggest that the myristoyl group does not contribute to monolayer binding. However, the acylation of a peptide resulted in a large increase of MIP. Finally, the physical state of lipid monolayers can have a strong effect on the values of MIP such that it is preferable to perform measurements with lipids showing a single physical state. Altogether the data show that the measurement of the maximum insertion pressure provides very useful information on the membrane binding properties of proteins and peptides although uncertainties must be provided to make sure the observed differences are significant.  相似文献   

15.
Membrane proteins in a biological membrane are surrounded by a shell or annulus of 'solvent' lipid molecules. These lipid molecules in general interact rather non-specifically with the protein molecules, although a few 'hot-spots' may be present on the protein where anionic lipids bind with high affinity. Because of the low structural specificity of most of the annular sites, the composition of the lipid annulus will be rather similar to the bulk lipid composition of the membrane. The structures of the solvent lipid molecules are important in determining the conformational state of a membrane protein, and hence its activity, through charge and hydrogen bonding interactions between the lipid headgroups and residues in the protein, and through hydrophobic matching between the protein and the surrounding lipid bilayer. Evidence is also accumulating for the presence of 'co-factor' lipid molecules binding with high specificity to membrane proteins, often between transmembrane alpha-helices, and often being essential for activity.  相似文献   

16.
Adsorption of amphiphilic peptides to the headgroup region of a lipid bilayer is a common mode of protein-membrane interactions. Previous studies have shown that adsorption causes membrane thinning. The degree of the thinning depends on the degree of the lateral expansion caused by the peptide adsorption. If this simple molecular mechanism is correct, the degree of lateral expansion and consequently the membrane thinning should depend on the size of the headgroup relative to the cross section of the hydrocarbon chains. Previously we have established the connection between the alamethicin insertion transition and the membrane thinning effect. In this paper we use oriented circular dichroism to study the effect of varying the size of the headgroup, while maintaining a constant cross section of the lipid chains, on the insertion transition. A simple quantitative prediction agrees very well with the experiment.  相似文献   

17.
Effects of topology, length, and charge on peptide interactions with lipid bilayers was investigated for variants of the human kininogen-derived peptide HKH20 (HKHGHGHGKHKNKGKKNGKH) by ellipsometry, CD, fluorescence spectroscopy, and z-potential measurements. The peptides display primarily random coil conformation in buffer and at lipid bilayers, and their lipid interaction is dominated by electrostatics, the latter evidenced by higher peptide adsorption and resulting membrane rupture for an anionic than for a zwitterionic membrane, as well as by strongly reduced adsorption and membrane rupture at high ionic strength. At sufficiently high peptide charge density, however, electrostatic interactions contribute to reducing the peptide adsorption and membrane defect formation. Truncating HKH20 into overlapping 10 amino acid peptides resulted in essentially eliminated membrane rupture and in a reduced amount peptide charges pinned at the lipid bilayer. Finally, cyclic HKH20 was found to be less efficient than the linear peptide in causing liposome rupture, partly due to a lower adsorption. Analogous results were found regarding bactericidal effects.  相似文献   

18.
Effects of topology, length, and charge on peptide interactions with lipid bilayers was investigated for variants of the human kininogen-derived peptide HKH20 (HKHGHGHGKHKNKGKKNGKH) by ellipsometry, CD, fluorescence spectroscopy, and z-potential measurements. The peptides display primarily random coil conformation in buffer and at lipid bilayers, and their lipid interaction is dominated by electrostatics, the latter evidenced by higher peptide adsorption and resulting membrane rupture for an anionic than for a zwitterionic membrane, as well as by strongly reduced adsorption and membrane rupture at high ionic strength. At sufficiently high peptide charge density, however, electrostatic interactions contribute to reducing the peptide adsorption and membrane defect formation. Truncating HKH20 into overlapping 10 amino acid peptides resulted in essentially eliminated membrane rupture and in a reduced amount peptide charges pinned at the lipid bilayer. Finally, cyclic HKH20 was found to be less efficient than the linear peptide in causing liposome rupture, partly due to a lower adsorption. Analogous results were found regarding bactericidal effects.  相似文献   

19.
Tryptophans in membrane proteins display strong preference for the lipid membrane interface and are important for anchoring proteins at the proper longitudinal level. Linear dichroism spectroscopy on indoles in shear-deformed liposomes has been used to show that this positioning is accompanied by an intrinsically adopted orientation, also observed for tryptophans in membrane-bound peptides. Similarities in orientation of different indoles suggest that tryptophan will adopt this orientation independent of the protein it is part of. From the orientation of indole electronic transition moments L(a), L(b) and B(b), a binding model is proposed where the indole long axis is approximately 60-65 degrees from the membrane normal and the indole plane is at an oblique angle. We propose that dipole-dipole interactions and steric constraints in the membrane hydrocarbon region determine positioning and orientation of tryptophans whereas hydrogen bonding and cation-pi interactions with lipid head-groups, though contributing to the membrane affinity of indoles, are less important.  相似文献   

20.
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号