首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We have identified the parC and parE genes encoding DNA topoisomerase IV (Topo IV) in Caulobacter crescentus . We have also characterized the effect of conditional Topo IV mutations on cell division and morphology. Topo IV mutants of C. crescentus are unlike mutants of Escherichia coli and S. typhimurium , which form long filamentous cells that are defective in nucleoid segregation and divide frequently to produce anucleate cells. Topo IV mutants of C. crescentus are highly pinched at multiple sites (cell separation phenotype) and they do not divide to produce cells lacking DNA. These results suggest unique regulatory mechanisms coupling nucleoid partitioning and cell division in this aquatic bacterium. In addition, distinctive nucleoid-partitioning defects are not apparent in C. crescentus Topo IV mutants as they are in E. coli and S. typhimurium . However, abnormal nucleoid segregation in parE mutant cells could be demonstrated in a genetic background containing a conditional mutation in the C. crescentus ftsA gene, an early cell division gene that is epistatic to parE for cell division and growth. We discuss these results in connection with the possible roles of C. crescentus Topo IV in the regulation of cell division, chromosome partitioning, and late events in polar morphogenesis. Although the ParC and ParE subunits of Topo IV are very similar in sequence to the GyrA and GyrB subunits of DNA gyrase, we have used DNA sequence analysis to identify a highly conserved 'GyrA box' sequence that is unique to the GyrA proteins and may serve as a hallmark of the GyrA protein family.  相似文献   

2.
Bacillus subtilis Bs gyrA and gyrB genes specifying the DNA gyrase subunits, and parC and parE genes specifying the DNA topoisomerase IV subunits, have been separately cloned and expressed in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Purification of the gyrA and gyrB subunits together resulted in predominantly two bands at molecular weights of 94 and 73kDa; purification of the parC and parE subunits together resulted in predominantly two bands at molecular weights of 93 and 75kDa, as predicted by their respective sequences. The ability of the subunits to complement their partner was tested in an ATP-dependent decatenation/supercoiling assay system. The results demonstrated that the DNA gyrase and the topoisomerase IV subunits produce the expected supercoiled DNA and relaxed DNA products, respectively. Additionally, inhibition of these two enzymes by fluoroquinolones has been shown to be comparable to those of the DNA gyrases and topoisomerases of other bacterial strains. In sum, the biological and enzymatic properties of these products are consistent with their authenticity as DNA gyrase and DNA topoisomerase IV enzymes from B. subtilis.  相似文献   

3.
K H Kim  T Akashi  I Mizuguchi  A Kikuchi 《Gene》1999,236(2):293-301
We have determined the complete nucleotide sequence of a 5544bp genomic DNA fragment from Aspergillus nidulans that encodes DNA topoisomerase II (topo II). It contains a single open reading frame of 4740bp that codes for 1579 amino acid residues with a molecular weight of 178kDa; when expressed in Escherichia coli and Saccharomyces cerevisiae the molecular weight was 180kDa. The gene (TOP2) is divided into three exons. Two introns, 54bp and 60bp in length, are located at nucleotide positions 187 and 3214 respectively. Comparison of the deduced amino acid sequence with other eukaryotic topo II sequences showed a higher degree of identity with other fungal enzymes than the human topo IIalpha. One of monoclonal antibodies raised against human topo II, 6H8, can cross-react with Aspergillus topo II.  相似文献   

4.
A chromosomal gene of Streptococcus pneumoniae carrying a spontaneous mutation to sulfonamide resistance was identified. Comparison of its DNA sequence with the wild-type sequence showed that the mutation, sul-d, consisted of an insert of 6 base pairs, a repeat of an adjacent 6-base-pair segment. The gene encoded a 34-kilodalton polypeptide, SulA, which as a dimer or trimer constituted the enzyme dihydropteroate synthase. This was shown by enzyme activity measurements, expression in minicells of Bacillus subtilis, and the amino-terminal sequence of the polypeptide product. Subcloning of the gene in an Escherichia coli expression vector allowed purification of the enzyme to 80% homogeneity in a single step and at high yield. Although a deleted plasmid, pLS83, produced the mutant dihydropteroate synthase, it did not confer sulfonamide resistance in vivo. It is suggested that the SulA polypeptide is also a component of an enzyme that acts in another step of folate biosynthesis and that this step is inhibited in vivo by either free or conjugated sulfonamides.  相似文献   

5.
The analyze selected fluoroquinolone resistance mechanisms of clinical E. faecalis strains was presented. In the second part of the study of genetic polymorphisms and mutations in the QRDRs of gyrA, gyrB, parC and parE genes were analyzed. The MSSCP technique and DNA sequencing were used. The activity (MICs) of ciprofloxacin, sparfloxacin and moxifloxacin were determined against 180 tested strains. The MSSCP method allows rapid screening of the genetic polymorphisms analyze of gyrA, gyrB, parC i parE genes. The amino acid substitutions of GyrA, GyrB and ParC were observed. The results indicate that mutations present among clinical E. faecalis strains associated with high level resistance to fluoroquinolons.  相似文献   

6.
The subunits of topoisomerase IV (topo IV), the ParC and ParE proteins in Escherichia coli, were purified to near homogeneity from the respective overproducers. They revealed type II topoisomerase activity only when they were combined with each other. In the presence of Mg2+ and ATP, topo IV was capable of relaxing a negatively or positively supercoiled plasmid DNA or converting the knotted P4 phage DNA, whether nicked or ligated, to a simple ring. However, supercoiling activity was not detected. The topoisomerase activity was not detectable when the purified ParC and ParE proteins were combined with the purified GyrB and GyrA proteins, respectively. This is consistent with the result that neither a parC nor a parE mutation was compensated by transformation with a plasmid carrying either the gyrA or the gyrB gene. Simultaneous introduction of both the gyrA and gyrB plasmids corrected the phenotypic defect of parC and parE mutants. The results suggest that DNA gyrase can substitute for topo IV at least in some part of the function for chromosome partitioning. Antisera were prepared against the purified ParC, ParE, GyrA, and GyrB proteins and used to investigate cellular localization of these gene products. ParC protein was found to be specifically associated with inner membranes only in the presence of DNA. This result suggests that one of the functions of topo IV might be to anchor chromosomes on membranes as previously proposed for eukaryotic topoisomerase II.  相似文献   

7.
We determined partial sequences of the gyrA and parC genes of Citrobacter freundii type strain, and then examined 38 C. freundii clinical strains isolated from patients with urinary tract infections for the association of alterations in GyrA and ParC with susceptibility to fluoroquinolones. Our results suggest that in C. freundii DNA gyrase may be a primary target of quinolones, that an amino acid change at Thr-83 or Asp-87 in GyrA is sufficient to decrease susceptibility to fluoroquinolones, and that accumulation of changes in GyrA with the simultaneous presence of an alteration at Ser-80 or Glu-84 in ParC may be associated with the development of high-level fluoroquinolone resistance in C. freundii clinical isolates.  相似文献   

8.
Clerocidin (CL), a diterpenoid natural product, alkylates DNA through its epoxide moiety and exhibits both anticancer and antibacterial activities. We have examined CL action in the presence of topoisomerase IV from Streptococcus pneumoniae. CL promoted irreversible enzyme-mediated DNA cleavage leading to single- and double-stranded DNA breaks at specific sites. Reaction required the diterpenoid function: no cleavage was seen using a naphthalene-substituted analogue. Moreover, drug-induced DNA breakage was not observed using a mutant topoisomerase IV (ParC Y118F) unable to form a cleavage complex with DNA. Sequence analysis of 102 single-stranded DNA breaks and 79 double-stranded breaks revealed an overwhelming preference for G at the −1 position, i.e. immediately 5′ of the enzyme DNA scission site. This specificity contrasts with that of topoisomerase IV cleavage with antibacterial quinolones. Indeed, CL stimulated DNA breakage by a quinolone-resistant topoisomerase IV (ParC S79F). Overall, the results indicate that topoisomerase IV facilitates selective irreversible CL attack at guanine and that its cleavage complex differs markedly from that of mammalian topoisomerase II which promotes both irreversible and reversible CL attack at guanine and cytosine, respectively. The unique ability to form exclusively irreversible DNA breaks suggests topoisomerase IV may be a key intracellular target of CL in bacteria.  相似文献   

9.
Topoisomerase IV, a C(2)E(2) tetramer, is involved in the topological changes of DNA during replication. This enzyme is the target of antibacterial compounds, such as the coumarins, which target the ATP binding site in the ParE subunit, and the quinolones, which bind, outside the active site, to the quinolone resistance-determining region (QRDR). After site-directed and random mutagenesis, we found some mutations in the ATP binding site of ParE near the dimeric interface and outside the QRDR that conferred quinolone resistance to Streptococcus pneumoniae, a bacterial pathogen. Modeling of the N-terminal, 43-kDa ParE domain of S. pneumoniae revealed that the most frequent mutations affected conserved residues, among them His43 and His103, which are involved in the hydrogen bond network supporting ATP hydrolysis, and Met31, at the dimeric interface. All mutants showed a particular phenotype of resistance to fluoroquinolones and an increase in susceptibility to novobiocin. All mutations in ParE resulted in resistance only when associated with a mutation in the QRDR of the GyrA subunit. Our models of the closed and open conformations of the active site indicate that quinolones preferentially target topoisomerase IV of S. pneumoniae in its ATP-bound closed conformation.  相似文献   

10.
The gene coding for the pneumococcal DNA adenine methylase that recognizes the sequence 5'-GATC-3' was cloned in a strain of Streptococcus pneumoniae that lacked both restriction endonucleases DpnI and DpnII. The gene was cloned as a 3.7-kilobase fragment of chromosomal DNA from a DpnII-containing strain inserted in both possible orientations in the multicopy plasmid vector pMP5 to give recombinant plasmids pMP8 and pMP10. Recombinant plasmids were selected by their resistance to DpnII cleavage. Cells carrying the recombinant plasmids modified phage in vivo so that it was restricted by DpnI- but not DpnII-containing hosts. They also showed levels of DNA methylase activity five times higher than that in cells of the original DpnII strain. No DpnII activity was observed in the clones; therefore, it was concluded that the insert did not contain an intact DpnII endonuclease gene and that methylation of host DNA did not turn on a latent form of the gene.  相似文献   

11.
For many known mechanisms of the drug resistance in microorganisms are described genetic markers (specific changes in the genome of microorganism, in the majority of the cases representing single nucleotide polymorphism). The search for the new methods, which make possible to identify single nucleotide changes with the greater effectiveness and at smaller prime is actual for the solution of the problem of the identification of the resistant strains. In this work a new approach of the determination of single nucleotide polymorphisms is proposed. It is based on the reactions of mini-sequencing and/or sequencing with the subsequent Matrix-Assisted Laser Desorption/Ionisation Time Of Flight Mass-Spectrometry (MALDI-TOF MS) of the reaction products. The approach was tested on a clinical group of Neisseria gonorrhoeae strains to investigate specific single nucleotide polymorphisms in genes gyrA and parC (the genetic markers of the bacterium fluoroquinolone resistance). The results of the nucleotide polymorphism deter- mination was completely agreed with the data, obtained earlier with the use of a "gold standard" (sequencing with the classical gel-electrophoresis separation of the reaction products). There is specific interest in the method of sequencing of the short DNA sequences using MALDI-TOF MS. The new high-throughput approach of the single nucleotide polymorphisms determination in bacterial genes considerably increases the effectiveness of the methods of microorganism's identification, genotyping and determining the genetic markers of the drug resistance.  相似文献   

12.
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.  相似文献   

13.
Streptococcus pneumoniae has two type II DNA-topoisomerases (DNA-gyrase and DNA topoisomerase IV) and a single type I enzyme (DNA-topoisomerase I, TopA), as demonstrated here. Although fluoroquinolones target type II enzymes, antibiotics efficiently targeting TopA have not yet been reported. Eighteen alkaloids (seven aporphine and 11 phenanthrenes) were semisynthesized from boldine and used to test inhibition both of TopA activity and of cell growth. Two phenanthrenes (seconeolitsine and N-methyl-seconeolitsine) effectively inhibited both TopA activity and cell growth at equivalent concentrations (~17 μM). Evidence for in vivo TopA targeting by seconeolitsine was provided by the protection of growth inhibition in a S. pneumoniae culture in which the enzyme was overproduced. Additionally, hypernegative supercoiling was observed in an internal plasmid after drug treatment. Furthermore, a model of pneumococcal TopA was made based on the crystal structure of Escherichia coli TopA. Docking calculations indicated strong interactions of the alkaloids with the nucleotide-binding site in the closed protein conformation, which correlated with their inhibitory effect. Finally, although seconeolitsine and N-methyl-seconeolitsine inhibited TopA and bacterial growth, they did not affect human cell viability. Therefore, these new alkaloids can be envisaged as new therapeutic candidates for the treatment of S. pneumoniae infections resistant to other antibiotics.  相似文献   

14.
The 2.7 A crystal structure of the 55-kDa N-terminal breakage-reunion domain of topoisomerase (topo) IV subunit A (ParC) from Streptococcus pneumoniae, the first for the quinolone targets from a gram-positive bacterium, has been solved and reveals a 'closed' dimer similar in fold to Escherichia coli DNA gyrase subunit A (GyrA), but distinct from the 'open' gate structure of Escherichia coli ParC. Unlike GyrA whose DNA binding groove is largely positively charged, the DNA binding site of ParC exhibits a distinct pattern of alternating positively and negatively charged regions coincident with the predicted positions of the grooves and phosphate backbone of DNA. Based on the ParC structure, a new induced-fit model for sequence-specific recognition of the gate (G) segment by ParC has been proposed. These features may account for the unique DNA recognition and quinolone targeting properties of pneumococcal type II topoisomerases compared to their gram-negative counterparts.  相似文献   

15.
The full length genes gyrB (2,415 bp), parC (2,277 bp), and parE (1,896 bp) in Edwardsiella tarda were cloned by PCR with degenerate primers based on the sequence of the respective quinolone resistance-determining region (QRDR), followed by elongation of 5' and 3' ends using cassette ligation-mediated PCR (CLMP). Analysis of the cloned genes revealed open reading frames (ORFs) encoding proteins of 804 (GyrB), 758 (ParC), and 631 (ParE) amino acids with conserved gyrase/topoisomerase features and motifs important for enzymatic function. The ORFs were preceded by putative promoters, ribosome binding sites, and inverted repeats with the potential to form cruciform structures for binding of DNA-binding proteins. When comparing the deduced amino acid sequences of E. tarda GyrB, ParC, and ParE with those of the corresponding proteins in other bacteria, they were found to be most closely related to Escherichia coli GyrB (87.6% identity), Klebsiella pneumoniae ParC (78.8% identity) and Salmonella typhimurium ParE (89.5% identity), respectively. The two topoisomerase genes, parC and parE, were found to be contiguous on the E. tarda chromosome. All 18 quinoloneresistant isolates obtained from Korea thus far did not contain subunit alternations apart from a substitution in GyrA (Ser83→Arg). However, an alteration in the QRDR of ParC (Ser84→Ile) following an amino acid substitution in GyrA (Asp87→Gly) was detected in E. tarda mutants selected in vitro at 8 microng/ml ciprofloxacin (CIP). A mutant with a GyrB (Ser464→Leu) and GyrA (Asp87→Gly) substitution did not show a significant increase in the minimum inhibitory concentration (MIC) of CIP. None of the in vitro mutants exhibited mutations in parE. Thus, gyrA and parC should be considered to be the primary and secondary targets, respectively, of quinolones in E. tarda.  相似文献   

16.
17.
The genes encoding the MspI restriction modification system, which recognizes the sequence 5' CCGG, have been cloned into pUC9. Selection was based on expression of the cloned methylase gene which renders plasmid DNA insensitive to MspI cleavage in vitro. Initially, an insert of 15 kb was obtained which, upon subcloning, yielded a 3 kb EcoRI to HindIII insert, carrying the genes for both the methylase and the restriction enzyme. This insert has been sequenced. Based upon the sequence, together with appropriate subclones, it is shown that the two genes are transcribed divergently with the methylase gene encoding a polypeptide of 418 amino acids, while the restriction enzyme is composed of 262 amino acids. Comparison of the sequence of the MspI methylase with other cytosine methylases shows a striking degree of similarity. Especially noteworthy is the high degree of similarity with the HhaI and EcoRII methylases.  相似文献   

18.
19.
We synthesized a DNA probe specific for the gene encoding eucaryotic DNA topoisomerase I by the polymerase chain reaction. The sequences of the primers for this reaction were deduced from the regions with extensive homology among the enzymes from the fission and budding yeasts, and the human. From the clones isolated by screening a Drosophila cDNA library with this DNA probe, two cDNA clones of 3.8 and 5.2 kb were characterized and completely sequenced. Both cDNA sequences contain an identical open reading frame for 972 amino acid residues. The 3.8 kb messenger RNA is likely generated by using a polyadenylation site 5' upstream to that used in generating the 5.2 kb mRNA. The predicted amino acid sequence shows that a segment of 420 amino acid residues at the amino terminus is hydrophilic, similar to the amino terminal 200 residues in the yeast and human enzymes. Furthermore, the Drosophila enzyme is unique in that the amino terminal 200 residues are enriched in serine and histidine residues; most of them are present in clusters. The rest of the Drosophila sequence is highly homologous to those from yeast and human enzymes. The evolutionarily conserved residues are identified and are likely the critical elements for the structure and function of this enzyme. A plasmid vector containing the cloned cDNA was constructed for the expression of Drosophila protein in Escherichia coli. The enzymatic and immunochemical analysis of the polypeptide produced in this heterologous expression system demonstrated that the expressed protein shares similar enzymatic properties and antigenic epitopes with DNA topoisomerase I purified from Drosophila embryos or tissue culture cells, thus establishing the bacterial expression system being useful for the future structure/function analysis of the Drosophila enzyme.  相似文献   

20.
A pneumococcal recombinant plasmid, pRG2, containing the lytA gene that codes for the pneumococcal N-acetylmuramoyl-L-alanine amidase has been constructed using the pneumococcal plasmid pLS1 as a vector. pRG2 was introduced by genetic transformation into a mutant of Streptococcus pneumoniae (M31) that has a complete deletion of the lytA gene. The transformed strain (M51) grew at a normal growth rate as 'diplo' cells and underwent autolysis at the end of the exponential phase of growth, two properties that had been lost in the deleted mutant M31. M51 lysed very rapidly at the end of the exponential phase when the cells were grown in choline-containing medium probably because of the higher level of amidase activity present in this strain as compared to the lysis-prone strain M11. These findings show that the expression of the plasmid-linked gene was placed under the mechanism(s) of control of the cell during the exponential phase. Our results demonstrate that the physiological role of the pneumococcal amidase was to catalyze the separation of the daughter cells at the end of the cell division to produce diplo cells; in addition we have also confirmed the basic role of this autolysin in the bacteriolytic nature of beta-lactam antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号