首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feitoza L  Guerra M 《Genetica》2011,139(3):305-314
Eukaryotic chromosomes are organized into two large and distinct domains, euchromatin and heterochromatin, which are cytologically characterized by different degrees of chromatin compaction during interphase/prophase and by post-synthesis modifications of histones and DNA methylation. Typically, heterochromatin remains condensed during the entire cell cycle whereas euchromatin is decondensed at interphase. However, a fraction of the euchromatin can also remain condensed during interphase and appears as early condensing prophase chromatin. 5S and 45S rDNA sites and telomere DNA were used to characterize these regions in metaphase and interphase nuclei. We investigated the chromosomal distribution of modified histones and methylated DNA in the early and late condensing prophase chromatin of two species with clear differentiation between these domains. Both species, Costus spiralis and Eleutherine bulbosa, additionally have a small amount of classical heterochromatin detected by CMA/DAPI staining. The distribution of H4 acetylated at lysine 5 (H4K5ac), H3 phosphorylated at serine 10 (H3S10ph), H3 dimethylated at lysine 4 or 9 (H3K4me2, H3K9me2), and 5-methylcytosine was compared in metaphase, prophase, and interphase cells by immunostaining with specific antibodies. In both species, the late condensing prophase chromatin was highly enriched in H4K5ac and H3K4me2 whereas the early condensing chromatin was very poor in these marks. H3K9me2 was apparently uniformly distributed along the chromosomes whereas the early condensing chromatin was slightly enriched in 5-methylcytosine. Signals of H3S10ph were restricted to the pericentromeric region of all chromosomes. Notably, none of these marks distinguished classical heterochromatin from the early condensing euchromatin. It is suggested that the early condensing chromatin is an intermediate type between classical heterochromatin and euchromatin.  相似文献   

2.
The centromeric region of Costus spiralis is characteristically composed of a small heterochromatic DAPI(+) band flanked by a discrete decondensed region. High concentrations of serine 10 of histone H3 (H3S10ph) around the DAPI(+) band in pachytene chromosomes and the location of this heterochromatin at the chromosome region directed towards the poles during metaphase-anaphase I confirm its integration into the centromeric region. Antibodies against both typical components of euchromatin histones (histone H4 acetylated at lysine 5 (H4K5ac) and histone H3 dimethylated at lysine 4 (H3K4me2)) and heterochromatin (dimethylated lysine 9 of H3 (H3K9me2) and anti-5-methylcytosine (5-mC)) were used to characterize the centromeric chromatin of this species during meiosis. In pachytene chromosomes, the decondensed terminal euchromatin of the chromosome arms were seen to be richer in H4K5ac and H3K4me2 histones, while the more condensed proximal region was relatively stronger labeled with anti-H3K9me2 and anti-5-methylcytosine (5-mC). The centromeric region itself, including the DAPI(+) band, was poor in all of these chromatin modifications, but it was highly enriched in H4K5ac at pachytene. Before and after this stage, the centromeric region was poorly labeled with anti-H4K5ac. Hypomethylation and hyperacetylation of any kind of heterochromatin has rarely been reported, and it may be related to the dominant role of the centromere domain over the heterochromatin repeats.  相似文献   

3.
4.
Histone modifications are implicated in regulating chromatin condensation but it is unclear how they differ between constitutive heterochromatin and unexpressed euchromatin. Chromatin immunoprecipitation (ChIP) assays were done on various human cell populations using antibodies specific for acetylated or methylated forms of histone H3 or H4. Analysis of the immunoprecipitates was by quantitative real-time PCR or semi-quantitative PCR (SQ-PCR). Of eight tested antibodies, the one for histone H4 acetylated at lysine 4, 8, 12, or 16 was best for distinguishing constitutive heterochromatin from unexpressed euchromatin, but differences in the extent of immunoprecipitation of these two types of chromatin were only modest, although highly reproducible. With this antibody, there was an average of 2.5-fold less immunoprecipitation of three constitutive heterochromatin regions than of four unexpressed euchromatic gene regions and about 15-fold less immunoprecipitation of these heterochromatin standards than of two constitutively expressed gene standards (P <0.001). We also analyzed histone acetylation and methylation by immunocytochemistry with antibodies to H4 acetylated at lysine 8, H3 trimethylated at lysine 9, and H3 methylated at lysine 4. In addition, immunocytochemical analysis was done with an antibody to heterochromatin protein 1alpha (HP1alpha), whose preferential binding to heterochromatin has been linked to trimethylation of H3 at lysine 9. Our combined ChIP and immunocytochemical results suggest that factors other than hypoacetylation of the N-terminal tails of H4 and hypermethylation of H3 at lysine 9 can play an important role in determining whether a chromatin sequence in mammalian cells is constitutively heterochromatic.  相似文献   

5.
Nuclear envelope-peripheral heterochromatin fractions contain multiple histone kinase activities. In vitro assays and amino-terminal sequencing show that one of these activities co-isolates with heterochromatin protein 1 (HP1) and phosphorylates histone H3 at threonine 3. Antibodies recognizing this post-translational modification reveal that in vivo phosphorylation at threonine 3 commences at early prophase in the vicinity of the nuclear envelope, spreads to pericentromeric chromatin during prometaphase and is fully reversed by late anaphase. This spatio-temporal pattern is distinct from H3 phosphorylation at serine 10, which also occurs during cell division, suggesting segregation of differentially phosphorylated chromatin to different regions of mitotic chromosomes.  相似文献   

6.
7.
8.
Loss of linker histone H1 in cellular senescence   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

9.
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single‐copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination‐poor region is preferentially marked by a heterochromatin‐typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin‐typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.  相似文献   

10.
Li F  Huarte M  Zaratiegui M  Vaughn MW  Shi Y  Martienssen R  Cande WZ 《Cell》2008,135(2):272-283
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.  相似文献   

11.
Cobb J  Miyaike M  Kikuchi A  Handel MA 《Chromosoma》1999,108(7):412-425
Mechanisms of chromosome condensation and segregation during the first meiotic division are not well understood. Resolution of recombination events to form chiasmata is important, for it is chiasmata that hold homologous chromosomes together for their oppositional orientation on the meiotic metaphase spindle, thus ensuring their accurate segregation during anaphase I. Events at the centromere are also important in bringing about proper attachment to the spindle apparatus. This study was designed to correlate the presence and activity of two proteins at the centromeric heterochromatin, topoisomerase II alpha (TOP2A) and histone H3, with the processes of chromosome condensation and individualization of chiasmate bivalents in murine spermatocytes. We tested the hypothesis that phosphorylation of histone H3 is a key event instigating localization of TOP2A to the centromeric heterochromatin and condensation of chromosomes as spermatocytes exit prophase and progress to metaphase. Activity of topoisomerase II is required for condensation of chromatin at the end of meiotic prophase. Histone H3 becomes phosphorylated at the end of prophase, beginning with its phosphorylation at the centromeric heterochromatin in the diplotene stage. However, it cannot be involved in localization of TOP2A, since TOP2A is localized to the centromeric heterochromatin throughout most of meiotic prophase. This observation suggests a meiotic function for TOP2A in addition to its role in chromatin condensation. The use of kinase inhibitors demonstrates that phosphorylation of histone H3 can be uncoupled from meiotic chromosome condensation; therefore other proteins, such as those constituting metaphase-promoting factor, must be involved. These results define the timing of important meiotic events at the centromeric heterochromatin and provide insight into mechanisms of chromosome condensation for meiotic metaphase.  相似文献   

12.
Y J Jin  R D Cole 《FEBS letters》1985,182(2):455-458
Non-uniform distribution of H1 histone in bovine thymus chromatin was demonstrated previously. Two classes of chromatin differ in aggregation properties and histone content. The class aggregatable by physiological saline is enriched in H1, especially H1ab, the variant known to be most powerful in condensing DNA. Now, the distribution of H1 subtypes is reported for brain chromatin, where H1ab and H1c were distributed as in thymus. In contrast, H1(0) preferred neither the aggregatable chromatin nor the aggregation-resistant class. It is suggested that H1(0) is uniformly distributed with regard to euchromatin and heterochromatin, whereas H1 is concentrated in heterochromatin.  相似文献   

13.
The hexaploid liliaceous plant Ornithogalum longibracteatum (2n=6x=54) has a heterochromatin-rich bimodal karyotype with large (L) and small (S) chromosomes. The composition and subgenomic distribution of heterochromatin was studied using molecular and cytological methods. The major component of centromeric heterochromatin in all chromosomes is Satl, an abundant satellite DNA with a basic repeat unit of 155 bp and an average A+T content (54%). The major component of the large blocks of intercalary heterochromatin in L chromosomes is Sat2, an abundant satellite DNA with a basic repeat unit of 115 bp and a high A+T content (76%). Additionally, traces of Sat2 can be detected at the centromeric regions of S chromosomes, while minor amounts of Satl are discernible in intercalary heterochromatin of L chromosomes. The chromosomal localisation pattern of Sat2 is consistent with the fluorescent staining pattern obtained with the A+T-specific DNA ligand 4'-6-diamidino-2-phenylindole (DAPI). A+T-rich intercalary heterochromatin is sticky and tends to associate ectopically during mitosis. Sister chromatid exchange clustering was found at the junctions between euchromatin and heterochromatin and at the centromeres. The pattern of mitosis-specific phosphorylation of histone H3 was not uniform along the length of the chromosomes. In all L and S chromosomes, from early prophase to ana-/telophase, there is hyperphosphorylation of histone H3 in the pericentromeric chromatin and a slightly elevated phosphorylated histone H3 level at the intercalary heterochromatin of L chromosomes. Consequently, the overall phosphorylated histone H3 metaphase labelling resembles the distribution of Satl in the karyotype of O. longibracteatum.  相似文献   

14.
15.
16.
17.
Heterochromatin protein 1 (HP1) is a nonhistone chromosomal protein, first identified in Drosophila, that plays a dose-dependent role in gene silencing. Three orthologs, HP1alpha, HP1beta, and HP1gamma, have been characterized in mammals. While HP1alpha and HP1beta have been unambiguously localized in heterochromatin by immunocytochemical methods, HP1gamma has been found either exclusively associated with euchromatin or present in both euchromatin and heterochromatin. Here, using an antibody directed against a peptide epitope at the carboxyl-terminal end of the molecule, we localize HP1gamma in both euchromatin and heterochromatin compartments of interphase nuclei, as well as in the pericentromeric chromatin and arms of mitotic chromosomes of 3T3 cells. This dual location was also observed in nuclei expressing HP1gamma as a fusion protein with green fluorescent protein. In contrast, when the distribution of HP1gamma was analyzed with antibodies directed against an amino-terminal epitope, the protein was detectable in euchromatin and not in heterochromatin, except for transient heterochromatin staining during the late S phase, when the heterochromatin undergoes replication. These data suggest that the controversial immunolocalization of HP1gamma in chromatin is due to the use of antibodies directed against topologically distinct epitopes, those present at the amino-terminal end of the molecule being selectively masked in nonreplicative heterochromatin.  相似文献   

18.
The functional significance of mono-, di-, and trimethylation of lysine residues within histone proteins remains unclear. Antibodies developed to selectively recognize each of these methylated states at histone H3 lysine 9 (H3 Lys9) demonstrated that mono- and dimethylation localized specifically to silent domains within euchromatin. In contrast, trimethylated H3 Lys9 was enriched at pericentric heterochromatin. Enzymes known to methylate H3 Lys9 displayed remarkably different enzymatic properties in vivo. G9a was responsible for all detectable H3 Lys9 dimethylation and a significant amount of monomethylation within silent euchromatin. In contrast, Suv39h1 and Suv39h2 directed H3 Lys9 trimethylation specifically at pericentric heterochromatin. Thus, different methylated states of H3 Lys9 are directed by specific histone methyltransferases to "mark" distinct domains of silent chromatin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号