首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Martin Schwartz 《BBA》1967,131(3):559-570
At short wavelengths (525–690 mμ) the direct measurement of the quantum yield of the photoreduction of NADP+ in normal O2-evolving spinach chloroplasts is constant ( approx. 0.3 equiv/hv). At short wavelengths (<690 mμ) the quantum yield for NADP+ reduction in 3(3,4-dichlorophenyl)-1,1-dimethylurea-poisoned chloroplasts supplied with the ascorbate-2,6-dichlorophenolindophenol couple (donor system) is approx. half as efficient as the normal system. At long wavelengths the quantum yield of NADP+ reduction in the donor system increases by a factor of 2 ( approx. 0.3 equiv/hv) when compared with the corresponding yield for the donor system at short wavelengths ( approx. 0.15 equiv/hv).

Between 525 and 690 mμ, the phosphorylation yield for the normal system is constant ( = 0.15 ATP/hv), maintaining a constant P/2e ratio of unity. The P/2e ratios indicate a tight coupling between phosphorylation and electron transport encompassing a single phosphorylation site for the transfer of two electrons.

Between 525 and 680 mμ, the phosphorylation yield for the donor system is constant ( approx. 0.04 ATP/hv), maintaining a P/2e ratio of approx. 0.5. At longer wavelengths (>690 mμ) the phosphorylation yield of the donor system rises ( approx. 0.07–0.08 ATP/hv) concomitant with the rise in the yield of electron flow.

These experiments suggest the possibility that two types of phosphorylation processes operate in chloroplasts, (1) a short-wavelength process coupled to the normal O2-evolving activity, and (2) a long-wavelength process coupled to the electron-donor activity of reagents such as DCIP.  相似文献   


2.
3.
Chloroplast ribosomal proteins from spinach have been prepared in the presence of a protease inhibitor and some modifications have been introduced to the previous characterization of the 50S subunits (Mache et al., MGG, 177, 333, 1980): 33 ribosomal proteins are detected instead of 34. No change has been observed for the 30S subunits.Using a light-driven system of protein synthesis it is shown that up to ten ribosomal proteins of the 30S and eight proteins of the 50S subunits are made in the chloroplast.Newly synthesized ribosomal subunits have been analysed on CsCl gradients after sedimentation at equilibrium, allowing the separation of fully assembled subunits from incomplete ribosomal particles. Most of the newly made 50S subunits are fully assembled (=1.634). A small amount of incomplete 50S particles (=1.686) is detectable. Newly made 30S subunits (=1.598) and incomplete 30S particles (=1.691) are also observed. The ribosomal proteins of the incomplete 30S have been determined. They contain eight or nine of the 30S-proteins, seven of which are synthesized within the chloroplast. It is suggested that incomplete ribosomal particles resulted from a step in the assembly of ribosomal subunits.  相似文献   

4.
5.
6.
Summary Using ESR we have demonstrated the formation of the ascorbate free radical from sodium ascorbate, methylene blue and light. In oxygen uptake experiments we have observed the production of hydrogen peroxide while spin trapping experiments have revealed the iron catalyzed production of the hydroxyl free radical in this system. The presence of this highly reactive radical suggests that it could be the radical that initiates free radical damage in this photodynamic system.  相似文献   

7.
8.
Three fundamentally different chloroplast ATP synthase samples of increasing complexity were visualized by atomic force microscopy. The samples are distinguishable in respect to the isolation technique, the detergent employed, and the final subunit composition. The homo-oligomer III was isolated following SDS treatment of ATP synthase, the proton-turbine III+IV was obtained by blue-native electrophoresis, and complete CFO was isolated by anion exchange chromatography of NaSCN splitted ATP synthase. In all three ATP synthase subcomplexes 14 and only 14 circularly arranged subunits III composed the intact transmembrane rotor. Therefore, 14 protomers built the membrane-resident proton turbine. The observed stoichiometry of 14 is not a biochemical artifact or affected by natural growth variations of the spinach, as previously suggested. A correlation between the presence of subunit IV in the imaged sample and the appearance of a central protrusion in the narrower orifice of the oligomeric cylinder III14 has been observed. In contrast to current predictions, in chloroplast FO the subunit IV can be found inside the cylinder III14 and not at its periphery, at least in the reconstituted 2D arrays imaged.  相似文献   

9.
Spinach chloroplast glyceraldehyde phosphate dehydrogenase (d-glyceraldehyde-3-phosphate: NADP oxidoreductase, phosphorylating; EC 1.2.1.13) is an equilibrium mixture of aggregates of a basic protomer (Mr about 145,000) and is active with both NADP and NAD. The enzyme is primarily “tetrameric” (Mr about 600,000), although minor amounts of smaller and larger oligomers are also found. Gel chromatography in buffer containing 30 μm NADP results in depolymerization of the enzyme, mainly to protomers. NAD does not dissociate and counteracts this effect of NADP.The apparent Km values of the protomers are 7 μm (NADP) and 8 μm (NAD). The aggregates with a Mr > 106 have properties similar to the protomers. The tetramer as first isolated has higher Mm values for NADP (380 μm) and NAD (48 μm), but its apparent affinity for NADP is further decreased by repeated gel filtrations in buffer or by a single one in buffer containing NAD. Such preparations display nonlinear kinetics when NADP is the varied substrate and have a Km (NADP) of about 1.5–3.3 μm. All these effects are reversible.V values are apparently the same in all enzyme forms and the V (NADP)V (NAD) ratio always approaches 2. Since, however, the enzyme is presumably dissociated by the NADP concentrations required for a “saturating” assay, the significance of V (NADP) seems questionable.  相似文献   

10.
The effects of reduced osmotic potential on the photosynthetic carbon reduction cycle were investigated by monitoring photosynthetic processes of spinach (Spinacia oleracea L. var. Long Standing Bloomsdale) chloroplasts exposed to increased assay medium sorbitol concentrations. CO2 assimilation was found to be inhibited at 0.67 molar sorbitol by about 60% from control rates at 0.33 molar sorbitol. This level of stress inhibition was greater than that affecting the reductive phase of the cycle; glycerate 3-phosphate reduction was inhibited at 0.67 molar by 27 to 40%. Sorbitol (0.67 molar) inhibited the rate of O2 evolution at saturating and limiting concentrations of NaHCO3, and extended the lag phase of O2 evolution. This indicated that factors which are rate-limiting to the photosynthetic process are adversely affected by reduced osmotic potential.

Analysis of photosynthetic products following CO2 fixation in 0.33 molar sorbitol and 0.67 molar sorbitol indicated that reduced osmotic potential facilitated increases in the levels of fructose 1,6-bisphosphate and triose phosphates with reductions in glucose 6-phosphate and fructose 6-phosphate, implicating fructose 1,6-bisphosphatase as a site of osmotic stress. Osmotic inhibition of the reductive portion (glycerate 3-phosphate to triose phosphate) of the photosynthetic carbon reduction cycle was partially attributed to feedback inhibition by the product, triose phosphate, on glycerate 3-phosphate reduction. A saturating concentration of ribose 5-phosphate partially overcame osmotic inhibition of CO2-supported O2 evolution, indicating another but apparently less severe site of stress inhibition in the sequence of ribose 5-phosphate to glycerate 3-phosphate.

  相似文献   

11.
Isolated spinach CF1 (chloroplast coupling factor 1) forms enzyme-bound ATP without any supply of energy in the presence of high concentrations of Pi [Feldman and Sigman (1982) J Biol Chem 257: 1676-1683]. The final amount of CF1-bound ATP synthesized was increased greatly by 1,2-propanediol, and moderately by methanol, ethanol, and dimethyl sulfoxide, but decreased by glycerol and octyl glucoside. Methanol and ethanol greatly increased the initial rate of ATP synthesis, while 1,2-propanediol increased it only moderately. Low concentrations (10-8 -10-6 M) of tentoxin, which inhibit ATPase activity of isolated CF1, did not affect enzyme-bound ATP synthesis. However, high concentrations (>10-5 M) of tentoxin, which stimulate ATPase activity of isolated CF1, enhanced the initial rate of CF1-bound ATP synthesis without significant effect on the final amount of ATP synthesized in the presence of medium ADP. The substrate of enzyme-bound ATP synthesized came largely from tightly bound ADP, not medium ADP, and tentoxin did not affect this substrate profile. Tentoxin did not affect the binding of medium ADP to high affinity sites on CF1.  相似文献   

12.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

13.
A comparison has been made of the optimal concentrations of Mg2+ and K+ ions necessary for both light-driven protein synthesis in intact spinach chloroplasts and for ATP-driven protein synthesis in broken chloroplasts, and the products of the two systems have been compared by polyacrylamide gel electrophoresis. Light-driven incorporation of amino acids into polypeptides in intact chloroplasts assayed in buffer systems containing sucrose or sorbitol as the osmoticum is inhibited by the addition of Mg2+, the effect being most marked at low concentrations (less than 40 mm) of KCl. On the other hand, chloroplasts suspended in 0.2 m KCl as osmoticum require Mg2+ (3 mm) for optimal light-driven protein-synthesizing activity. Incorporation of amino acids by broken chloroplasts in the dark, supplemented with ATP and GTP, requires 9 mm Mg2+ for maximum activity. A requirement for monovalent cations is best filled by K+ (approx 30 mm) in the case of the light-driven, intact chloroplast system whereas, in the ATP-driven, broken chloroplast system, NH4+ (approx 80 mm) gave the highest activity.Autoradiographs of Na dodecyl sulfate-polyacrylamide gels of the products from both the light-driven, intact chloroplasts and from the ATP-driven, broken chloroplasts reveal qualitatively similar patterns. There are at least four radioactive polypeptides in the soluble protein fraction the dominant product being coincident with the large subunit of Fraction 1 protein. In the membrane fraction at least nine discrete products can be resolved.  相似文献   

14.
Rice (Oryza sativa L. cv. Safari) plants were grown over a 21-d period in nutrient solutions containing Mn concentrations varying between 0.125 and 32 mg·L–1. The plant shoots and the thylakoid membranes showed similar overall Mn increases for this range of treatments, but different accumulation kinetics. It was found that the highest Mn treatment were associated to the synthesis of a new thylakoid protein with an average molecular mass of 36.5 kDa and a Mn:protein ratio of about 1. This protein exhibited superoxide dismutase activity, as well as a high content of Gln, Asp, Glu, Leu and Gly. Its EPR spectrum is characteristic of high-spin Mn(II), in a S=5/2 ground state. A comparative study of SDS polyacrylamide gel profiles of thylakoid polypeptides from the various treatments disclosed quantitative changes, as well as a new 37/36-kDa polypeptide band in the two highest Mn treatments. The photosynthetic electron transport rates coupled to PSII and PSI showed a significant increase until the 8-mg·L–1 Mn treatment. The related superoxide production of thylakoids (monitored by EPR spectroscopy) showed minimum values from the 0.5-mg·L–1 Mn treatment onwards, which, as shown by the thiobarbituric acid reaction was coupled to a non-significant variation of the acyl lipid peroxidation. It was concluded that Oryza sativa L. cv. safari has a high internal tolerance to Mn as it synthesises a new manganese protein that mimics superoxide dismutase functioning.  相似文献   

15.
Copper, zinc-superoxide dismutase (CuZn-SOD) is a cytosolic, antioxidant enzyme that scavenges potentially damaging superoxide radical (()O(2)(-)). Under the proper conditions, CuZn-SOD also catalyzes the oxidation and reduction of certain small molecules. Here, we demonstrate that increased exposure to hydrogen peroxide (H(2)O(2)), a by-product of the ()O(2)(-) scavenging reaction, dramatically increases the ability of CuZn-SOD to oxidize melatonin and reduce S-nitrosoglutathione (GSNO). After a 15min in vitro incubation with CuZn-SOD and 1mM H(2)O(2), 76% of the melatonin was oxidized, compared to 52% with 0.25mM H(2)O(2), and just 9% without H(2)O(2). Pre-incubation with 1mM H(2)O(2) resulted in a 100% increase in the rate of GSNO breakdown by CuZn-SOD in the presence of glutathione (GSH) compared to untreated CuZn-SOD. Collectively, these data suggest that even small increases in intracellular H(2)O(2) levels may result in the oxidation and/or reduction of small molecules critical for proper cellular function.  相似文献   

16.
Intact chloroplasts prepared from summer-grown spinach plants supported (aspartate plus 2-oxoglutarate)-dependent O2 evolution but not (glutamine plus 2-oxoglutarate)-dependent O2 evolution. The former activity, which was sensitive to amino oxyacetate, was attributed to transaminase activity and reduction of the resulting oxalo-acetate to malate using H2O as eventual electron donor. A reconstituted chloroplast system which included chloroplast stroma, thylakoid membranes, ferredoxin and NADP(H) supported O2 evolution in the presence ofl-glutamine and 2-oxoglutarate at rates of 15–22 μmol mg-1 chlorophyll h-1 although lower rates were obtained with material from winter-grown plants. Activity was not observed in the absence of ferredoxin and omission of NADP(H) decreased activity by 40%. The reaction was associated with the production of 0.49 mol O2 mol-1 2-oxoglutarate consumed and up to 0.46 mol O2 mol-1 glutamine supplied. The reaction, which was inhibited by azaserine but not by methionine sulphoximine or amino oxyacetate, was attributed to light-coupled glutamate synthase (EC 1.4.1.13) with H2O serving as eventual electron donor. Activity was not affected significantly byl-malate. The reconstituted system also supported O2 evolution in the presence of nitrite, oxaloacetate, (aspartate plus 2-oxoglutarate) and oxidised glutathione.  相似文献   

17.
Electron transport, phosphorylation and internal proton concentration were measured in illuminated spinach chloroplast thylakoid membranes under a number of conditions. Regardless of the procedure used to vary these parameters, the data fit a simple chemiosmotic model. Protons from Photosystem II did not appear to be utilized differently from those derived from Photosystem I. The maximal phosphorylation efficiency (Pe2) for photophosphorylation in washed thylakoids under oxidizing conditions is likely to be 43. This value is consistent with a proton-to-electron-pair ratio of 4 for electron flow through both photosystems and a proton-to-ATP ratio of 3 for the chloroplast proton-ATPase.  相似文献   

18.
The mechanism of thiol modulation of the chloroplast ATP synthase by Escherichia coli thioredoxin was investigated in the isolated ATPase subcomplex and in the ATP synthase complex reconstituted in bacteriorhodopsin proteoliposomes. Thiol modulation was resolved kinetically by continuously monitoring ATP hydrolysis by the isolated subcomplex and ATP synthesis by proteoliposomes. The binding rate constant of reduced thioredoxin to the oxidized ATPase subcomplex devoid of its epsilon subunit could be determined. It did not depend on the catalytic turnover. Reciprocically, the catalytic turnover did not seem to depend on thioredoxin binding. Thiol modulation by Trx of the epsilon-bearing ATPase subcomplex was slow and favored the release of epsilon. The rate constant of thioredoxin binding to the membrane-bound ATP synthase increased with the protonmotive force. It was lower in the presence of ADP than in its absence, revealing a specific effect of the ATP synthase turnover on thioredoxin-gamma subunit interaction. These findings, and more especially the comparisons between the isolated ATPase subcomplex and the ATP synthase complex, can be interpreted in the frame of the rotational catalysis hypothesis. Finally, thiol modulation changed the catalytic properties of the ATP synthase, the kinetics of which became non-Michaelian. This questions the common view about the nature of changes induced by ATP synthase thiol modulation.  相似文献   

19.
Effects of H2O2 on the transient phase of fluorescence and thelight-induced absorption change of C550 in the presence of ferricyanidewere studied in spinach chloroplast fragments at room temperature.In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU),the parameter of the variable fluorescence, work integral, wasincreased by the addition of H2O2 and the rate of its recoveryin the dark was decreased. The steady-state fluorescence yieldwas decreased by H2O2. Essentially the same results were obtainedin the absence of ferricyanide. In the presence of DCMU, H2O2 decreased the steady-state absorptionchange of C550 and inhibited its reoxidation in the dark. Thesame effects were observed when H2O2 was added to chloroplastfragments in the presence of DCMU and carbonyl cyanide m-chlorophenylhydrazone.From these data we concluded that the fluorescence quencherQ and C550 are not identical. 1Present address: Department of Biology, Kyushu Dental College,Kitakyushu 803, Japan. (Received June 20, 1974; )  相似文献   

20.
Ferredoxin (Fd) in higher plants is encoded by a nuclear gene, synthesized in the cytoplasm as a larger precursor, and imported into the chloroplast, where it is proteolytically processed, and assembled with the [2Fe-2S] cluster. The final step in the biosynthetic pathway of Fd can be analyzed by a reconstitution system composed of isolated chloroplasts and [35S]cysteine, in which [35S]sulfide and iron are incorporated into Fd to build up the 35S-labeled Fe-S cluster. Although a lysed chloroplast system shows obligate requirements for ATP and NADPH, in vitro chemical reconstitution of the Fe-S cluster is generally thought to be energy-independent. The present study investigated whether ATP and NADPH in the chloroplast system of spinach (Spinacia oleracea) are involved in the supply of [35S]sulfide or iron, or in Fe-S cluster formation itself. [35S]Sulfide was liberated from [35S] cysteine in an NADPH-dependent manner, whereas ATP was not necessary for this process. This desulfhydration of [35S]cysteine occurred before the formation of the 35S-labeled Fe-S cluster, and the amount of radioactivity in [35S]sulfide was greater than that in 35S-labeled holo-Fd by a factor of more than 20. Addition of nonradioactive sulfide (Na2S) inhibited competitively formation of the 35S-labeled Fe-S cluster along with the addition of nonradioactive cysteine, indicating that some of the inorganic sulfide released from cysteine is incorporated into the Fe-S cluster of Fd. ATP hydrolysis was not involved in the production of inorganic sulfide or in the supply of iron for assembly into the Fe-S cluster. However, ATP-dependent Fe-S cluster formation was observed even in the presence of sufficient amounts of [35S]sulfide and iron. These results suggest a novel type of ATP-dependent in vivo Fe-S cluster formation that is distinct from in vitro chemical reconstitution. The implications of these results for the possible mechanisms of ATP-dependent Fe-S cluster formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号