首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suriclone (RP 31,264), like zopiclone (RP 27,267), belongs to the family of cyclopyrrolones and is chemically entirely different from the benzodiazepines (BZDs). However, it possesses a pharmacological profile close to that of the BZDs and proved to be useful in therapeutics as an anxiolytic agent. In the present paper it is shown that suriclone possesses a high affinity for flunitrazepam binding sites and that tritiated suriclone binds specifically with high affinity in rat hippocampus (KD = 0.44 +/- 0.03 nM) and rat cerebellum (KD = 0.53 +/- 0.12 nM). Further, suriclone binding sites are recognized by BZDs or zopiclone, similarly in the two regions. The affinities of four BZD derivatives--nitrazepam, flunitrazepam, diazepam, and chlordiazepoxide--are similar for suriclone and flunitrazepam binding sites. Suriclone binding sites are, like flunitrazepam sites, protected from thermal inactivation by gamma-aminobutyric acid (GABA) (10 microM), but only flunitrazepam binding is enhanced by GABA. It could be postulated from this that suriclone interacts with a subpopulation of receptors that might be modulated differently from flunitrazepam binding sites. Our results indicate that suriclone could be a new probe for investigating the so-called BZD receptors.  相似文献   

2.
Ethyl beta-carboline-3-carboxylate has recently been isolated from human urine and it was proposed that derivatives of this compound might be related to an endogenous ligand for benzodiazepine receptors. In the present study we investigated high-affinity binding of [3H]propyl beta-carboline-3-carboxylate ([3H]PrCC) to rat brain membranes. [3H]PrCC binds specifically and with high affinity (half-maximal binding at ca. 1nM) to rat brain membranes. The regional and subcellular distributions of specific [3H]PrCC binding are similar, but not identical, to the distributions of [3H]flunitrazepam or [3H]-diazepam binding. The total numbers of binding sites labelled by [3H]PrCC and [3H]flunitrazepam in rat cerebellum are closely similar, and both ligands bind to cerebellar membranes in a mutually exclusive way. The pharmacological selectivity of [3H]PrCC and [3H]diazepam binding is almost identical. Binding of [3H]PrCC like binding of [3H]diazepam, can be increased in vitro by muscimol, GABA and SQ 20.009. Although subtle differences in binding characteristics were observed, these results indicate that [3H]PrCC and benzodiazepines bind to a common recognition site on benzodiazepine receptors.  相似文献   

3.
The characteristics of [3H]flunitrazepam binding to brain specific benzodiazepine receptors were determined at varying temperatures. The rates at which [3H]flunitrazepam associated with and dissociated from benzodiazepine receptors increased with increasing temperatures. The dissociation constant (KD) also increased with increases in temperature. The (KD) determined by Scatchard analyses of saturation isotherms showed a similar change with changes in temperature. The maximal binding capacity (Bmax) did not change with changes in temperature. The inhibitory constants of several benzodiazepines to inhibit [3H]flunitrazepam binding to brain were also higher at 37°C than at 0°C, suggesting that the binding affinity of all benzodiazepines to brain benzodiazepine receptors is lower at 37°C than at 0°C. Van't Hoff analysis of [3H]flunitrazepam binding to brain at different temperatures reveals two linear components to this relationship.  相似文献   

4.
Rat brain membranes were treated with different protein modifying reagents, all of which were able to reduce [3H]tryptamine binding. However, inactivation by N-ethylmaleimide and iodoacetamide only was counteracted by coincubation with tryptamine. Thus, the [3H]tryptamine binding molecule is a membrane protein with an essential sulfhydryl group at the binding site. After incubation of digitonin-solubilized membranes with seven different lectins, no precipitation of [3H]tryptamine binding sites was observed. On concanavalin A and wheat germ agglutinin affinity chromatography, no [3H]tryptamine binding activity was found to be specifically bound. Therefore, the [3H]tryptamine binding protein appears to be devoid of lectin binding carbohydrate residues.  相似文献   

5.
The investigation of [3H] PCP and [3H] TCP binding properties to rat cerebrum and cerebellum resulted in the demonstration of multiple binding sites for the two drugs. In the two tissue preparations PCP had a lower affinity than TCP. In membranes from the cerebrum an equal number of high affinity binding sites were present for [3H] PCP and [3H] TCP. However, low affinity binding sites were two times more numerous for [3H] PCP than for [3H] TCP. In the cerebellum, the number of high and low affinity sites labeled by the two radioligands was identical, but the number of high affinity sites was about 7 fold lower than in the cerebrum. Taken together these results may indicate that in the cerebrum [3H] PCP labels other sites than NMDA/PCP receptor(s), maybe sigma receptors and/or the dopamine uptake complex. In human cerebral cortex samples [3H] TCP also bound to two different sites. The number of high and low affinity sites were 12 and 3 times, respectively, less abundant than in the rat cerebrum. Low affinity sites were of higher affinity (5 times) than corresponding sites in the rat brain. In the human cerebellum [3H] TCP binding parameters were identical to those measured in the same region in the rat.  相似文献   

6.
T H Chiu  O F Yu  H C Rosenberg 《Life sciences》1989,45(11):1021-1028
Irreversible incorporation of [3H]flunitrazepam and [3H]Ro15-4513 into GABA/benzodiazepine receptor subunits was studied by UV irradiation using ligand-bound membrane pellets from rat cerebral cortical and cerebellar synaptic membranes. Specific incorporation for [3H]flunitrazepam was greater in the pellet than in the suspension. The incorporation was identical for [3H]Ro15-4513 in both pellet and suspension. With the ligand-bound pellets, 50% of the available binding sites were photolabeled by both ligands in cortex and cerebellum. SDS polyacrylamide gel electrophoresis and fluorography of [3H]flunitrazepam photo-labeled receptor revealed the same number of major sites in both brain regions. In contrast, [3H]Ro15-4513 appears to label fewer sites in cortex and cerebellum. Photoaffinity labeling with [3H]flunitrazepam in ligand-bound membrane pellet provides a more selective and reliable method for studying the subunit structure of GABA/benzodiazepine receptor complex.  相似文献   

7.
The CNS of the cockroach Periplaneta americana contains saturable, specific binding sites for [3H]GABA, [3H]flunitrazepam and [35S]TBPS. The [3H]GABA binding site exhibits a pharmacological profile distinct from that reported for mammalian GABAA and GABAB receptors. The most potent inhibitors of [3H]GABA binding were GABA and muscimol, whereas isoguvacine, thiomuscimol and 3-aminopropane sulphonic acid were less effective. Bicuculline methiodide and baclofen were ineffective. Binding of [35S]TBPS was partially inhibited by 1.0 × 10−6 M GABA, whilst binding of [3H]flunitrazepam was enhanced by 1.0 × 10−7 M GABA. The pharmacological profile of the [3H]flunitrazepam binding site showed some similarities with the peripheral benzodiazepine binding sites of vertebrates, with Ro-5-4864 being a far more effective inhibitor of binding than clonazepam. Thus a class of GABA receptors with pharmacological properties distinct from mammalian GABA receptor subtypes is present in insect CNS.  相似文献   

8.
Extracts of Valeriana officinalis have been used in folkloric medicine for its sedative, hypnotic, tranquilizer and anticonvulsant effects, and may interact with -aminobutyric acid (GABA) and/or benzodiazepine sites. At low concentrations, valerian extracts enhance [3H]flunitrazepam binding (EC50 4.13 × 10–10 mg/ml). However, this increased [3H]flunitrazepam binding is replaced by an inhibition at higher concentrations (IC50 of 4.82 × 10–1 mg/ml). These results are consistent with the presence of at least two different biological activities interacting with [3H]flunitrazepam binding sites. Valerian extracts also potentiate K+ or veratridine-stimulated release of radioactivity from hippocampal slices preloaded with [3H]GABA. Finally, inhibition of synaptosomal [3H]GABA uptake by valerian extracts also displays a biphasic interaction with guvacine. The results confirm that valerian extracts have effects on GABAA receptors, but can also interact at other presynaptic components of GABAergic neurons.  相似文献   

9.
In both clinical and forensic toxicology, the analysis of hair for drugs is an important tool to determine drug use in the past or to verify abstinence from illegal drugs during extended periods. Melanin is proposed as one of the factors that influences drug incorporation to hair and we have characterized the binding of the drug flunitrazepam to melanin in vitro. The drug was 3H labeled and melanin granules from cuttlefish, Sepia officinalis, were used according to the suggested standard for melanin studies. We observed a rapid Langmuir-like binding followed by a slower diffusion-limited binding that may be interpreted as an initial surface binding followed by deeper bulk binding. From three concentrations of melanin, with a 60-min incubation time, a mean saturation value of 180 +/- 20 pmol/mg was calculated. The binding of a group of benzodiazepines and tranquilizers was compared to the binding of [3H]flunitrazepam by means of displacement experiments. These drugs showed binding characteristics similar to [3H]flunitrazepam except phenobarbital, which had a lower affinity to melanin. The method presented in this study allowed measurements with low melanin and drug concentrations and it has the strength of directly measuring the amount of drug bound to melanin, in contrast to previous indirect methods.  相似文献   

10.
[3H]Spiperone ([3H]SPI) binding sites in rat or bovine striata have been solubilized using CHAPS or digitonin detergents. Solubilized sites retained the binding characteristics of those in native membrane preparations. The same solubilized material, however, did not bind [3H]tyramine ([3H]PTA), thus indicating that [3H]PTA binding sites and DA receptors are different chemico-physical entities. In membrane preparations or crude synaptosomes obtained from the c.striatum of neonatally-rendered hypothyroid rats, when central DA-pathways are impaired, both [3H]PTA binding and [3H]DA uptake processes were markedly decreased, with no effect on [3H]mazindol ([3H]MAZ) binding, compared to euthyroids. Reserpine, a well-known inhibitor of DA-uptake into a variety of secretory vesicles, and a potent in vivo andin vitro inhibitor of [3H]PTA binding, did not affect the [3H]MAZ binding process. This further supported the suggestion that while [3H]PTA binding sites are almost totally associated with the vesicular transporter for DA, [3H]MAZ does label a site involved in the DA-translocation across the neuronal membrane. The latter process seems to be rather insensitive to thyroid hypofunction, when however the intracellular storage of DA might be consistently impaired. In conclusion, PTA might be well exploited as a marker of the DA vesicular transporter through its molecular characterization, whenever possible.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

11.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

12.
Astroglial cells in primary cultures bind [3H]flunitrazepam with a high affinity on a single type of site and on a number of binding sites which increased during astroglial growth and differentiation. These binding sites show a particular pharmacological spectrum characterized by an inhibition of high affinity by RO-5-4864 (4-chlorodiazepam), an anticonvulsant of the benzodiazepine family and by an inhibition of binding of lower affinities by diazepam clonazepam and clobazam. RO-5-4864 and clonazepam compete for the same binding site in astroglia. The heat stability and the hormonal modulation by thyroxine are similar for astroglia and neuronal-cells. Benxodiazepines modulate the astroglial 5-HT receptor. Such an effect could be a possible physiological response to benzodiazepines for astroglial cells in primary cultures.  相似文献   

13.
Abstract: This study evaluated the hypotheses that in vivo lead (Pb) exposure would alter α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding and, based on known glutamate-dopamine interactions and Pb-induced changes in dopamine (DA) systems, that AMPA binding might be differentially influenced by DA agonist treatment under conditions of Pb exposure. Alterations in high-affinity ([3H]AMPA) versus total AMPA [6-[3H]cyano-7-nitroquinoxaline-2,3-dione ([3H]CNQX)] receptor binding were determined in medial frontal cortex, dorsal striatum, and nucleus accumbens of rats exposed to 0, 50, or 150 ppm of Pb acetate for 2 weeks or 8 months. Additional 8-month groups received chronic intermittent treatment with saline, the D1 agonist SKF82958, or the general DA agonist apomorphine. Two-week exposures increased AMPA receptor densities, whereas robust decreases occurred after 8 months of Pb; at the latter time point changes were more pronounced for high-affinity than total AMPA receptor binding, with high-affinity effects expressed preferentially in dorsal striatum and nucleus accumbens. DA agonist treatments almost fully reversed Pb-related declines in [3H]AMPA binding but either had no effect (apomorphine) or even further potentiated (SKF82958) the decreases in [3H]CNQX binding. One possible basis for the long-term (8-month) decrease in AMPA binding is a postsynaptic glutamatergic stimulation of non-NMDA receptors.  相似文献   

14.
Six polychlorinated convulsant insecticides that potently inhibit t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to rat brain membranes also potentiate the protective effect of NaCl (200 mM) against heat inactivation of [3H]flunitrazepam binding sites on the same membranes. Similar effects were obtained with all "cage" convulsants tested. The rank order of potencies as heat protection potentiators was similar to the rank order of potencies as inhibitors of [35S]TBPS binding (alpha-endosulfan greater than endrin greater than dieldrin greater than toxaphene greater than lindane). alpha-Endosulfan and endrin are more potent in both respects than any previously reported picrotoxin-like (cage) convulsant, but are much less toxic to mammals. The greatly reduced toxicities of alpha-endosulfan and endrin in mammals may reflect partial gamma-aminobutyric acid (GABA)-neutral properties of these compounds. Time courses of heat inactivation of [3H]flunitrazepam binding sites in the presence of 200 mM NaCl plus saturating concentrations of endrin or picrotoxin revealed monophasic components constituting about 88% of the binding sites, suggesting that virtually all [3H]flunitrazepam binding sites are coupled to picrotoxin binding sites in the GABA/benzodiazepine/picrotoxin receptor complex. Protection against heat inactivation constitutes a useful tool for characterizing the various allosterically linked binding sites in neurotransmitter receptor complexes.  相似文献   

15.
The binding of [3H]flunitrazepam was studied in membranes prepared from the kidney and cerebral cortex of unilaterally nephrectomized rats made hypertensive by simultaneous deoxycorticosterone acetate (DOCA) and NaCl administration. A significant 35–43% increase in the number of [3H]flunitrazepam binding sites (Bmax) was found in the renal membranes prepared from the hypertensive rats; there was no change in the density of binding sites in the membranes obtained from the cerebral cortex. The Kd of [3H]flunitrazepam binding did not change either in the renal or in the cerebral membranes (~ 12 nM in the kidney and ~2.0 nM in the brain). Drug specificity studies with renal membranes showed that the inhibition of [3H]flunitrazepam binding by various benzodiazepines did not jibe with their pharmacologic potency as anxiolytic agents. An intrarenal distribution of specific [3H]flunitrazepam binding was found in the bovine kidney; specific binding was greatest in the outer cortex and virtually absent in the medulla, the minor calyx and the renal artery. The evidence that the renal benzodiazepine binding site is of high affinity, is specific, has a unique distribution, and is regulated during hypertension suggests that it may be associated with an important pathophysiologic structure.  相似文献   

16.
The binding of [14,15-3H]14,15-dihydroforskolin ([3H]DHF) to rat liver membranes has been further characterized and was compared with the stimulatory effect of forskolin on adenylate cyclase. The binding equilibrium dissociation constant (KD) for 14,15-dihydroforskolin obtained in inhibition experiments was 0.6 microM, with a maximal binding capacity (Bmax) of 114 pmol/mg protein. A similar KD value (0.5 microM) was derived from kinetics studies that revealed very rapid association and dissociation reactions. For structure-activity relationship studies several forskolin derivatives were synthesized and tested for their ability to inhibit [3H]DHF binding and increase adenylate cyclase activity. Among the tested compounds, forskolin itself was the most potent agonist (K1 = 0.2 microM). Further modification of the molecule in position 7 and (or) 1 decreased or abolished its agonist properties in both adenylate cyclase and binding studies. [3H]DHF binding was not affected by several nucleotides, carbohydrates, lectins, and hormone receptor agonists including isoproterenol, glucagon, and adenosine, but the steroids 17-beta-estradiol, progesterone, and testosterone showed slight inhibitory effects at unphysiologically high concentrations. [3H]DHF binding and forskolin-stimulated adenylate cyclase were sensitive to heat and N-ethylmaleimide treatment. Forskolin protected adenylate cyclase against inactivation by heat but not by N-ethylmaleimide. Preincubation of the membrane with trypsin decreased [3H]DHF binding. The results presented in this study demonstrate that the binding sites identified with [3H]DHF have a high specificity for forskolin and provide evidence that these binding sites are involved in the stimulation of adenylate cyclase by forskolin.  相似文献   

17.
Some atypical muscarinic drugs were compared with classical drugs with respect to inhibition of specific binding of [3H]pirenzepine ([3H]PZ) and [3H]quinuclidinyl benzilate ([3H]QNB) to membrane preparations of rat brain. The interactions of the agonists McN-A343 and carbachol with [3H]QNB at muscarinic sites in brain stem preparations were differently modulated in the presence of an excess of PZ. Moreover, McN-A343 exhibited a preferential affinity for [3H]PZ sites in whole brain membranes whereas carbachol bound with high affinity to [3H]QNB sites in brain stem preparations. Various muscarinic agonists and antagonists displayed different affinity patterns in the [3H]PZ and [3H]QNB binding. These data are indicative of two populations of pharmacologically distinguishable binding sites and support the concept of muscarinic receptor heterogeneity in rat brain.  相似文献   

18.
'Peripheral' binding sites for benzodiazepines are under neural or homonal control in the pineal gland, olfactory bulb, and kidney. These observations prompted a search for an endogenous substance which could modulate these sites under physiological conditions. Acidified methanol extracts from several tissues (e.g. stomach, kidney, lung) were found to inhibit the binding of [3H]Ro 5-4864 to 'peripheral' binding sites, but did not significantly affect the binding of [3H]diazepam to 'brain' benzodiazepine receptors. Fractionation of a crude extract prepared from antral stomach by either ultrafiltration or gel filtration chromatography yielded high (Mr greater than 10 000) and low (Mr less than 1000) Mr fractions which competitively inhibited [3H]Ro 5-4864 binding to 'peripheral' sites. These observations suggest the presence of endogenous substances in several rat tissues which may represent physiologically important ligands for 'peripheral' binding sites for benzodiazepines.  相似文献   

19.
The density of high affinity binding sites for [3H]4'-chlorodiazepam [( 3H]Ro 5-4864) in guinea pig cerebral cortex is significantly higher (3.8-fold) than the density reported in the rat, and is nearly equal to the density of binding sites for other [3H]benzodiazepines (e.g., diazepam, flunitrazepam). The density of these [3H]Ro 5-4864 binding sites was generally higher in guinea pig brain than in rat brain, with the exception of olfactory bulb. Both the subcellular distribution and pharmacologic profile of these sites in guinea pig brain appears qualitatively similar to observations previously reported in the rat. The high density of binding sites for [3H]Ro 5-4864, coupled with the potency of this compound as a convulsant in the guinea pig, suggest this species will be a valuable model for elucidating putative pharmacologic and physiologic functions of these sites in brain.  相似文献   

20.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号