首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binding sites on human IgG1 for human Fc gamma receptor (Fc gamma R) I, Fc gamma RIIa, Fc gamma RIIb, Fc gamma RIIIa and neonatal FcR have been mapped. A common set of IgG1 residues is involved in binding to all Fc gamma Rs, while Fc gamma RII and Fc gamma RIII utilize distinct sites outside this common set. In addition to residues which abrogated binding to the Fc gamma R, several positions were found which improved binding only to specific Fc gamma Rs or simultaneously improved binding to one type of Fc gamma R and reduced binding to another type. Selected IgG1 variants with improved binding to Fc gamma RIIIa were then tested in an in vitro antibody-dependent cellular cytotoxicity (ADCC) assay and showed an enhancement in ADCC when either peripheral blood mononuclear cells or natural killer cells were used.  相似文献   

2.
Protein design is becoming an increasingly useful tool for optimizing protein drugs and creating novel biotherapeutics. Recent progress includes the engineering of monoclonal antibodies, cytokines, enzymes and viral fusion inhibitors.  相似文献   

3.
The relatively recent recognition of the major role played by antimicrobial peptides (AMPs) in sustaining an effective host response to immune challenges was greatly influenced by studies of amphibian peptides. AMPs are also widely regarded as a potential source of future antibiotics owing to a remarkable set of advantageous properties ranging from molecular simplicity to low-resistance swift-kill of a broad range of microbial cells. However, the peptide formula per se, represents less than ideal drug candidates, namely because of poor bioavailability issues, potential immunogenicity, optional toxicity and high production costs. To address these issues, synthetic peptides have been designed, reproducing the critical peptide biophysical characteristic in unnatural sequence-specific oligomers. Thus, the use of peptidomimetics to overcome the limitations inherent to peptides physical characteristics is becoming an important and promising approach for improving the therapeutic potential of AMPs. Here, we review most recent advances in the design strategies and the biophysical properties of the main classes of mimics to natural AMPs, emphasizing the importance of structure-activity relationship studies in fine-tuning of their physicochemical attributes for improved antimicrobial properties.  相似文献   

4.
Proteins that need to be structured in their native state must be stable both against the unfolded ensemble and against incorrectly folded (misfolded) conformations with low free energy. Positive design targets the first type of stability by strengthening native interactions. The second type of stability is achieved by destabilizing interactions that occur frequently in the misfolded ensemble, a strategy called negative design. Here, we investigate negative design adopting a statistical mechanical model of the misfolded ensemble, which improves the usual Gaussian approximation by taking into account the third moment of the energy distribution and contact correlations. Applying this model, we detect and quantify selection for negative design in most natural proteins, and we analytically design protein sequences that are stable both against unfolding and against misfolding. Proteins 2013; 81:1102–1112. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Advances in biotechnology have now created a capacity to produce therapeutically active proteins on a commercial scale, opening the potential for their application in an array of disease conditions. The process of translation of the variety of different therapeutic proteins into the medicines used in clinics is now occurring. To assist in this translation, new formulations to deliver proteins could play an important role. These new formulations need to more adequately address the pharmacological and therapeutic requirement for each particular protein/peptide and, in that way, either improve present therapies or extend with new entries the current list of protein based medicines used in clinic.
Snjezana StolnikEmail:
  相似文献   

6.
Engineering therapeutic proteins   总被引:2,自引:0,他引:2  
Many early drug candidates derived from biotechnology failed in clinical trials because of their low affinity/specificity, short half-lives or immunogenicity. Protein engineering techniques have been applied to circumvent some of the problems that hindered these earlier trials, resulting in clinical benefits from a range of engineered antibodies and other proteins.  相似文献   

7.
《MABS-AUSTIN》2013,5(6):580-582
Monoclonal antibodies represent the fastest growing class of pharmaceuticals. A major problem, however, is that the proteins are susceptible to aggregation at the high concentration commonly used during manufacturing and storage. Our recent publication describes a technology based on molecular simulations to identify aggregation-prone regions of proteins in silico. The technology, called spatial aggregation propensity (SAP), identifies hot-spots for aggregation based on the dynamic exposure of spatially-adjacent hydrophobic amino acids. Monoclonal antibodies (mAbs) in which patches with high-SAP scores are changed to patches with significantly reduced SAP scores via a single mutation are more stable than wild type, thus validating the SAP method for mapping aggregation-prone regions on proteins. We propose that the SAP technology will be useful for protein stabilization, and as a screening tool to bridge discovery and development of protein-based therapeutics by a rational assessment of the developability of candidate protein drugs.  相似文献   

8.

Protein glycosylation is a very important quality attribute of any biopharmaceutical product as it affects the efficacy, serum half-life, and antigenicity of a molecule. The present expression hosts commercially utilized for a recombinant glycoprotein production generally cannot produce a desired and uniform glycan composition and generally exhibit non-human glycans that can lead to unwanted side effects. The authors provide a comprehensive review of various approaches which can be implemented to minimize the glycan heterogeneity for the production of the desired protein with improved glycoforms. The authors also describe that the industry standard expression systems such as mammalian, insect, and yeast are glycoengineered to produce human-like glycan composition of a recombinant product. This review summarizes the recent technologies used for the improvement of the glycan composition of the biotherapeutics, focusing largely on the selection of an appropriate expression host, glycoengineering, and upstream process optimization to control protein glycosylation and thus enhanced biological activity with fewer side effects. Here, we also suggest various approaches such as host and clone selection to achieve expected glycosylation in a recombinant protein. The cell culture, biochemical, and physical process parameters play a key role in the manufacturing of the desired glycoform of a therapeutic protein. Hence, these components are to be considered very carefully while developing such glycoproteins. Also, glycoengineering of production host to modulate the protein glycosylation is also recommended in the present review.

  相似文献   

9.
Membrane systems are used throughout the downstream purification in the commercial production of high value therapeutic proteins. Over the last two decades, new membranes, modules, and systems have been developed specifically to meet the requirements of the biotechnology industry. These developments have been facilitated by an improved fundamental understanding of: (1) the effects of electrostatic interactions and concentration polarization on protein transmission during ultrafiltration and (2) the role of membrane morphology on protein fouling during both sterile and virus filtration. This perspective highlights some of the key work in this area and provides insights into possible future improvements in membrane technology for the purification of recombinant therapeutic proteins. Biotechnol. Bioeng. 2009;103: 227–230. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Since the first PEGylated product was approved by the Food and Drug Administration in 1990, PEGylation has been widely used as a post-production modification methodology for improving biomedical efficacy and physicochemical properties of therapeutic proteins. Applicability and safety of this technology have been proven by use of various PEGylated pharmaceuticals for many years. It is expected that PEGylation, as the most established technology for extension of drug residence in the body, will play an important role in the next generation therapeutics, such as peptides, protein nanobodies and scaffolds, which due to their diminished molecular size need half-life extension. This review focuses on several factors important in the production of PEGylated biopharmaceuticals enabling efficient preparation of highly purified PEG-protein conjugates that have to meet stringent regulatory criteria for their use in human therapy. Areas addressed are PEG properties, the specificity of PEGylation reactions, separation and large-scale purification, the availability and analysis of PEG reagents, analysis of PEG-protein conjugates, the consistency of products and processes and approaches used for rapid screening of pharmacokinetic properties of PEG-protein conjugates.  相似文献   

11.

Key message

An improved immunofluorescence staining method significantly facilitates the visualization of the subcellular localization of interested proteins in chloroplasts.

Abstract

As an important technical approach, immunofluorescence staining is widely used in the subcellular localization study of interested proteins. During the study of the functions of chloroplast division proteins, immunofluorescence staining was frequently adopted. Previously, a method has been developed to study the localization of a chloroplast division protein, FtsZ. However, it is laborious and time-consuming. In this study, we report a modified immunofluorescence staining method, in which protoplasts were isolated from leaf tissues, and then fixed for immunofluorescence staining. The time of the experiment was significantly reduced to several hours. Furthermore, we used correction pen in the fixation procedure and a new way to coat the slide, which greatly saved the cost of the experiment. With the chloroplast division protein ARC6 as an example, we can get a good fluorescence signal. Moreover, the localization of ARC6 in two chloroplast division mutants, arc3 and arc5, and three other plant species, such as cabbage, radish and pea, was also successfully analyzed with our new method. Overall, the immunofluorescence staining method we reported here is very practical, and it significantly facilitates the visualization of the subcellular localization of interested proteins in plant cells.
  相似文献   

12.

Background  

To develop protein therapeutics from exogenous sources, it is necessary to mitigate the risks of eliciting an anti-biotherapeutic immune response. A key aspect of the response is the recognition and surface display by antigen-presenting cells of epitopes, short peptide fragments derived from the foreign protein. Thus, developing minimal-epitope variants represents a powerful approach to deimmunizing protein therapeutics. Critically, mutations selected to reduce immunogenicity must not interfere with the protein's therapeutic activity.  相似文献   

13.
This review describes aspects of negative staining of isolated integral membrane proteins. Detergents play a central role in the isolation of membrane proteins and also in their solubility in aqueous solutions. Specimens of mixed micelles of membrane proteins and nonionic detergents can be easily prepared as long as the detergent concentration remains above the critical micellar concentration. Membrane proteins involved in the process of photosynthesis have been taken as examples to illustrate their interaction with different detergents. Upon negative staining, mixed micelles of membrane proteins and detergents show characteristic top and side view projections. On their sides, mixed micelles can easily aggregate into strings.  相似文献   

14.
Infectious diseases are one of the main causes of human morbidity and mortality. In the last few decades, pathogenic microorganisms' resistance to conventional drugs has been increasing, and it is now pinpointed as a major worldwide health concern. The need to search for new therapeutic options, as well as improved treatment outcomes, has therefore increased significantly, with biologically active peptides representing a new alternative. A substantial research effort is being dedicated towards their development, especially due to improved biocompatibility and target selectivity. However, the inherent limitations of peptide drugs are restricting their application. In this review, we summarize the current status of peptide drug development, focusing on antiviral and antimicrobial peptide activities, highlighting the design improvements needed, and those already being used, to overcome the drawbacks of the therapeutic application of biologically active peptides.  相似文献   

15.
  1. Download : Download high-res image (112KB)
  2. Download : Download full-size image
  相似文献   

16.
Human therapeutic proteins from silkworms   总被引:1,自引:0,他引:1  
  相似文献   

17.
ABSTRACT: BACKGROUND: A useful goal for metabolic engineering would be to generate non-growing but metabolically active quiescent cells which would divert the metabolic fluxes towards product formation rather than growth. However, for products like recombinant proteins which are intricately coupled to the growth process it is difficult to identify the genes that need to be knocked-out/knocked-in to get this desired phenotype. To circumvent this we adopted an inverse metabolic engineering strategy which would screen for the desired phenotype and thus help in the identification of genetic targets which need to be modified to get overproducers of recombinant protein. Such quiescent cells would obviate the need for high cell density cultures and increase the operational life span of bioprocesses. RESULTS: A novel strategy for generating a library consisting of randomly down regulated metabolic pathways in E. coli was designed by cloning small genomic DNA fragments in expression vectors. Some of these DNA fragments got inserted in the reverse orientation thereby generating anti-sense RNA upon induction. These anti-sense fragments would hybridize to the sense mRNA of specific genes leading to gene 'silencing'. This library was first screened for slow growth phenotype and subsequently for enhanced over-expression ability. Using Green Fluorescent Protein (GFP) as a reporter protein on second plasmid, we were able to identify metabolic blocks which led to significant increase in expression levels. Thus down-regulating the ribB gene (3, 4 dihydroxy-2-butanone-4-phosphate synthase) led to a 7 fold increase in specific product yields while down regulating the gene kdpD (histidine kinase) led to 3.2 fold increase in specific yields. CONCLUSION: We have designed a high throughput screening approach which is a useful tool in the repertoire of reverse metabolic engineering strategies for the generation of improved hosts for recombinant protein expression.  相似文献   

18.
19.
This contribution reports on a study using Purexa™-MQ multimodal anion-exchange (AEX) membranes for protein polishing at elevated solution conductivities. Dynamic binding capacities (DBC10) of bovine serum albumin (BSA), human immunoglobulins, and salmon sperm DNA (ss-DNA) are reported for various salt types, salt concentrations, flowrates, and pH. Using 1 mg/ml BSA, DBC10 values for Purexa™-MQ were >90 mg/ml at conductivities up to 15 mS/cm. The membranes maintained a high, salt-tolerant BSA DBC10 of 89.8 ± 2.7 (SD) over the course of 100 bind-elute cycles. Polishing studies with acidic and basic monoclonal antibodies at >2 kg/L loads showed that Purexa™-MQ had higher clearance of host cell proteins and aggregate species at high conductivity (13 mS/cm) and in the presence of phosphate than other commercial AEX media. Purexa™-MQ also had a high ss-DNA DBC10 of 50 mg/ml at conductivities up to 15 mS/cm, markedly outperforming other commercial products. In addition to the effectiveness of Purexa™-MQ for protein polishing at elevated solution conductivities, its unusually high binding capacity for ss-DNA indicates potential applications for plasmid DNA purification.  相似文献   

20.
Measuring and monitoring of protein oxidation modifications is important for biopharmaceutical process development and stability assessment during long-term storage. Currently available methods for biomolecules oxidation analysis use time-consuming peptide mapping analysis. Therefore, it is desirable to develop high-throughput methods for advanced process control of protein oxidation. Here, we present a novel approach by which oxidative protein modifications are monitored by an indirect potentiometric method. The method is based on adding an electron mediator, which enhances electron transfer (ET) between all redox species and the electrode surface. Specifically, the procedure involves measuring the sharp change in the open circuit potential (OCP) for the mediator system (redox couple) as a result of its interaction with the oxidized protein species in the solution. Application of Pt and Ag/AgCl microelectrodes allowed for a high-sensitivity protein oxidation analysis. We found that the Ru(NH3)62+/3+ redox couple is suitable for measuring the total oxidation of a wide range of therapeutic proteins between 1.1 and 13.6%. Accuracy determined by comparing with the known percentage oxidation of the reference standard showed that percentage oxidation determined for each sample was within ±20% of the expected percentage oxidation determined by mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号