首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Hsp100/Clp ATPases constitute a family of closely related proteins of which some members function solely as chaperones whereas others additionally can associate with the unrelated ClpP peptidase forming a Clp proteolytic complex. We have investigated the role of four Clp ATPases in the versatile pathogen, Staphylococcus aureus. Previously, we showed that ClpX is required for expression of major virulence factors and for virulence of S. aureus, but not for survival during heat shock. In the present study, we have inactivated clpC, clpB and clpL and, while none of these mutations affected toxin production, both ClpC and ClpB and to a minor extent ClpL were required for intracellular multiplication within bovine mammary epithelial cells. These defects were paralleled by an inability of the clpC mutant to grow at high temperature and of the clpB mutant to induce thermotolerance indicating that the protective functions of these proteins are required both at high temperature and during infection. By primer extension analysis and footprint studies, we show that expression of clpC and clpB is controlled by the negative heat-shock regulator, CtsR, and that ClpC is required for its repressor activity. Thus, ClpC is a likely sensor of stress encountered during both environmental stress and infection. In addition to virulence factor production the ability to form biofilms is of importance to S. aureus as a nosocomial pathogen. Interestingly, biofilm formation was reduced in the absence of ClpX or ClpC whereas it was enhanced in the absence of ClpP. Thus, our data show that Clp proteolytic complexes and the Clp ATPases control several key processes of importance to the success of S. aureus as a pathogen.  相似文献   

2.
Most stress-inducible polypeptides are members of broader protein families that function either as molecular chaperones or constituents of proteolytic pathways. These systems control many aspects of protein structure and function throughout the cell under all types of growth regimes. The Clp/HSP1 00 protein family is a recently characterized representative, with constitutive and stress-inducible members found in many different organisms and various intracellular locations. Besides being regulators of energy-dependent proteolysis, Clp proteins may also function as molecular chaperones. Constitutive Clp proteins are involved foremost in cellular protein maintenance and repair, in cooperation with other chaperone and proteolytic systems. At high temperatures, additional Clp proteins are induced in response to rising levels of inactive polypeptides, resulting from either biosynthetic errors, thermal denaturation and aggregation. Clp proteins presumably help to stabilize selected polypeptides during severe thermal stress and enable resolubilization of non-functional protein aggregates, as well as promoting the degradation of irreversibly damaged polypeptides. The union of chaperone and proteolytic regulatory functions in one molecule suggests that certain Clp proteins play a decisive role in determining the destiny of proteins, not only during normal growth but also under conditions of extreme stress. This review briefly covers recent findings on the diversity of Clp proteins and their potential importance within the cell.  相似文献   

3.
The Clp ATPases define a novel class of molecular chaperones   总被引:14,自引:3,他引:11  
The Clp ATPases were originally identified as a regulatory component of the bacterial ATP-dependent Clp serine proteases. Proteins homologous to the Escherichia coli Clp ATPases (ClpA, B, X or Y) have been identified in every organism examined so far. Recent data suggest that the Clp ATPases are not only specificity factors which help to 'present' various protein substrates to the ClpP or other catalytic proteases, but are also molecular chaperones which can function independently of ClpP. This review discusses the recent evidence that the Clp ATPases are indeed molecular chaperones capable of either repairing proteins damaged during stress conditions or activating the initiation proteins for Mu, λ or P1 DNA replication. A mechanism is suggested to explain how the Clp ATPases 'decide' whether to repair or destroy their protein substrates.  相似文献   

4.
《Annals of botany》1999,83(6):593-599
Proteases are critical regulatory factors for many metabolic cellular processes as well as being vital for degrading proteins damaged during environmental stresses. Many of those responsible for targeted protein degradation require the hydrolysis of ATP, and one class that has attracted much attention recently are the Clp proteases. They are among the best characterized proteases to date, and were the first shown to rely on an ATPase regulatory subunit possessing molecular chaperone activity, which functions both within the proteolytic complex and independently. A range of Clp proteins has been identified from many different bacteria and eukaryotes, with by far the greatest number and diversity of forms in oxygenic photobionts such as cyanobacteria and higher plants. Functionally, Clp proteins have also evolved into one of the more critical proteolytic enzymes within photobionts, and it is now somewhat of a paradox that we currently know least about Clp protease functions in the photosynthetic organisms, where they have their most important roles. This discrepancy is now being addressed, with studies on Clp protein in cyanobacteria and, in an increasing number, in higher plants.  相似文献   

5.
Mycobacterium tuberculosis is a pathogen of major global importance. Validated drug targets are required in order to develop novel therapeutics for drug-resistant strains and to shorten therapy. The Clp protease complexes provide a means for quality control of cellular proteins; the proteolytic activity of ClpP in concert with the ATPase activity of the ClpX/ClpC subunits results in degradation of misfolded or damaged proteins. Thus, the Clp system plays a major role in basic metabolism, as well as in stress responses and pathogenic mechanisms. M. tuberculosis has two ClpP proteolytic subunits. Here we demonstrate that ClpP1 is essential for viability in this organism in culture, since the gene could only be deleted from the chromosome when a second functional copy was provided. Overexpression of clpP1 had no effect on growth in aerobic culture or viability under anaerobic conditions or during nutrient starvation. In contrast, clpP2 overexpression was toxic, suggesting different roles for the two homologs. We synthesized known activators of ClpP protease activity; these acyldepsipeptides (ADEPs) were active against M. tuberculosis. ADEP activity was enhanced by the addition of efflux pump inhibitors, demonstrating that ADEPs gain access to the cell but that export occurs. Taken together, the genetic and chemical validation of ClpP as a drug target leads to new avenues for drug discovery.  相似文献   

6.
Multiprotein complexes in the cell are dynamic entities that are constantly undergoing changes in subunit composition and conformation to carry out their functions. The protein-DNA complex that promotes recombination of the bacteriophage Mu is a prime example of a complex that must undergo specific changes to carry out its function. The Clp/Hsp100 family of AAA+ ATPases plays a critical role in mediating such changes. The Clp/Hsp100 unfolding enzymes have been extensively studied for the roles they play in protein degradation. However, degradation is not the only fate for proteins that come in contact with the ATP-dependent unfolding enzymes. The Clp/Hsp100 enzymes induce structural changes in their substrates. These structural changes, which we refer to as "remodeling", ultimately change the biological activity of the substrate. These biological changes include activation, inactivation (not associated with degradation), and relocation within the cell. Analysis of the interaction between Escherichia coli ClpX unfoldase and the Mu recombination complex, has provided molecular insight into the mechanisms of protein remodeling. We discuss the key mechanistic features of the remodeling reactions promoted by ClpX and possible implications of these findings for other biological reactions.  相似文献   

7.
8.
clpP and clpC of Bacillus subtilis encode subunits of the Clp ATP-dependent protease and are required for stress survival, including growth at high temperature. They play essential roles in stationary phase adaptive responses such as the competence and sporulation developmental pathways, and belong to the so-called class III group of heat shock genes, whose mode of regulation is unknown and whose expression is induced by heat shock or general stress conditions. The product of ctsR , the first gene of the clpC operon, has now been shown to act as a repressor of both clpP and clpC , as well as clpE , which encodes a novel member of the Hsp100 Clp ATPase family. The CtsR protein was purified and shown to bind specifically to the promoter regions of all three clp genes. Random mutagenesis, DNaseI footprinting and DNA sequence deletions and comparisons were used to define a consensus CtsR recognition sequence as a directly repeated heptad upstream from the three clp genes. This target sequence was also found upstream from clp and other heat shock genes of several Gram-positive bacteria, including Listeria monocytogenes , Streptococcus salivarius , S. pneumoniae , S. pyogenes , S. thermophilus , Enterococcus faecalis , Staphylococcus aureus , Leuconostoc oenos , Lactobacillus sake , Lactococcus lactis and Clostridium acetobutylicum . CtsR homologues were also identified in several of these bacteria, indicating that heat shock regulation by CtsR is highly conserved in Gram-positive bacteria.  相似文献   

9.
Clp P represents a unique family of serine proteases   总被引:19,自引:0,他引:19  
The amino acid sequence of Clp P, the proteolytic subunit of the ATP-dependent Clp protease of Escherichia coli, closely resembles a protein encoded by chloroplast DNA, which is well conserved between chloroplasts of different plant species. The homology extends over almost the full length of the sequences of both proteins and consists of approximately 46% identical and approximately 70% similar amino acids. Antibodies against E. coli Clp P cross-reacted with proteins with Mr of 20,000-30,000 in bacteria, lower eukaryotes, plants, and animal cells. Since the regulatory subunit of Clp protease, Clp A, also has a homolog in plants, as well as in other bacteria and in lower eukaryotes, it is likely that ATP-dependent proteolysis in chloroplasts is catalyzed in part by a Clp-like protease and that both components of Clp-like proteases are widespread in living cells. We have identified Ser-111 as the active site serine in E. coli Clp P modified by diisopropyl fluorophosphate. Mutational alteration of Ser-111 or His-136 eliminates proteolytic activity of Clp P. Both residues are found in highly conserved regions of the protein. The sequences around the active site residues suggest that Clp P represents a unique class of serine protease. Amino-terminal processing of cloned Clp P mutated at either Ser-111 or His-136 occurs efficiently when wild-type clpP is present in the chromosome but is blocked in clpP- hosts. Processing of Clp P appears, therefore, to involve an intermolecular autocatalytic cleavage reaction. Since processing of Clp P occurs in clpA- cells, the autoprocessing activity of Clp P is independent of Clp A.  相似文献   

10.
11.
12.
13.
Exposure of cells to elevated temperatures triggers the synthesis of chaperones and proteases including components of the conserved Clp protease complex. We demonstrated previously that the proteolytic subunit, ClpP, plays a major role in stress tolerance and in the degradation of non-native proteins in the Gram-positive bacterium Lactococcus lactis. Here, we used transposon mutagenesis to generate mutants in which the temperature- and puromycin-sensitive phenotype of a lactococcal clpP null mutant was partly alleviated. In all mutants obtained, the transposon was inserted in the L. lactis trmA gene. When analysing a clpP, trmA double mutant, we found that the expression normally induced from the clpP and dnaK promoters in the clpP mutant was reduced to wild-type level upon introduction of the trmA disruption. Additionally, the degradation of puromycyl-containing polypeptides was increased, suggesting that inactivation of trmA compensates for the absence of ClpP by stimulating an as yet unidentified protease that degrades misfolded proteins. When trmA was disrupted in wild-type cells, both stress tolerance and proteolysis of puromycyl peptides was enhanced above wild-type level. Based on our results, we propose that TrmA, which is well conserved in several Gram-positive bacteria, affects the degradation of non-native proteins and thereby controls stress tolerance.  相似文献   

14.
Archaea are a valuable source of enzymes for industrial and scientific applications because of their ability to survive extreme conditions including high salt and temperature. Thanks to advances in molecular biology and genetics, archaea are also attractive hosts for metabolic engineering. Understanding how energy-dependent proteases and chaperones function to maintain protein quality control is key to high-level synthesis of recombinant products. In archaea, proteasomes are central players in energy-dependent proteolysis and form elaborate nanocompartments that degrade proteins into oligopeptides by processive hydrolysis. The catalytic core responsible for this proteolytic activity is the 20S proteasome, a barrel-shaped particle with a central channel and axial gates on each end that limit substrate access to a central proteolytic chamber. AAA proteins (ATPases associated with various cellular activities) are likely to play several roles in mediating energy-dependent proteolysis by the proteasome. These include ATP binding/hydrolysis, substrate binding/unfolding, opening of the axial gates, and translocation of substrate into the proteolytic chamber.  相似文献   

15.
16.
17.
18.
19.
The presence of the heat stress response-related ATPases ClpC and ClpX or the peptidase ClpP in the cell is crucial for tolerance of many forms of stress in Bacillus subtilis. Assays for detection of defects in protein degradation suggest that ClpC, ClpP, and ClpX participate directly in overall proteolysis of misfolded proteins. Turnover rates for abnormal puromycyl peptides are significantly decreased in clpC, clpP, and clpX mutant cells. Electron-dense aggregates, most likely due to the accumulation of misfolded proteins, were noticed in studies of ultrathin cryosections in clpC and clpP mutant cells even under nonstress conditions. In contrast, in the wild type or clpX mutants such aggregates could only be observed after heat shock. This phenomenon supports the assumption that clpC and clpP mutants are deficient in the ability to solubilize or degrade damaged and aggregated proteins, the accumulation of which is toxic for the cell. By using immunogold labeling with antibodies raised against ClpC, ClpP, and ClpX, the Clp proteins were localized in these aggregates, showing that the Clp proteins act at this level in vivo.  相似文献   

20.
Animal CHIP proteins are chaperone-dependent E3 ubiquitin ligases that physically interact with Hsp70, Hsp90 and proteasome, promoting degradation of a selective group of non-native or damaged proteins in animal cells. The plant CHIP-like protein, AtCHIP, also plays important roles in protein turnover metabolism. AtCHIP interacts with a proteolytic subunit, ClpP4, of the chloroplast Clp protease in vivo, and ubiquitylates ClpP4 in vitro. The steady-state level of ClpP4 is reduced in AtCHIP-overexpressing plants under high-intensity light conditions, suggesting that AtCHIP targets ClpP4 for degradation and thereby regulates the Clp proteolytic activity in chloroplasts under certain stress conditions. Overexpression of ClpP4 in Arabidopsis leads to chlorotic phenotypes in transgenic plants, and chloroplast structures in the chlorotic tissues of ClpP4-overexpressing plants are abnormal and largely devoid of thylakoid membranes, suggesting that ClpP4 plays a critical role in chloroplast structure and function. As AtCHIP is a cytosolic protein that has been shown to play an important role in regulating an essential chloroplast protease, this research provides new insights into the regulatory networks controlling protein turnover catabolism in chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号