首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent progress in studies of anaerobic nitrate reduction and nitrous oxide formation in fungi has been reviewed. Current understanding of the biochemistry of nitrate and nitrite reduction to nitrous oxide and ammonium under oxygen limitation is presented, with emphasis on patterns of fungal co-denitrification, properties of the enzymes involved, and prevalence of nitrate respiration among fungal species.  相似文献   

2.
Suspensions of denitrifying cells of Pseudomonas perfectomarinus reduced nitrate and nitrate as expected to dinitrogen; but, in the presence of acetylene, nitrous oxide accumulated when nitrate or nitrate was reduced. When supplied at the outset in place of nitrate and nitrate, nitrous oxide was rapidly reduced to dinitrogen by cells incubated in anaerobic vessels in the absence of acetylene. In the presence of 0.01 atmospheres of acetylene, however, nitrous oxide was not reduced. Ethylene was not produced, nor did it influence the rate of nitrous oxide reduction when provided instead of acetylene. Cells exposed to 0.01 atmospheres of acetylene for as long as 400 min were able to reduce nitrous oxide after removal of acetylene at a rate comparable to that of cells not exposed to acetylene. Acetylene did not affect the production or functioning of assimilatory nitrate or nitrite reductase in axenic cultures of Enterobacter aerogenes or Trichoderma uride. While exposed to acetylene, bacteria in marine sediment slurries produced measurable quantities of nitrous oxide from glucose- or acetate-dependent reduction of added nitrate. Possible use of acetylene blockage for measurement of denitrification in unamended marine sediments is discussed.  相似文献   

3.
Suspensions of denitrifying cells of Pseudomonas perfectomarinus reduced nitrate and nitrate as expected to dinitrogen; but, in the presence of acetylene, nitrous oxide accumulated when nitrate or nitrate was reduced. When supplied at the outset in place of nitrate and nitrate, nitrous oxide was rapidly reduced to dinitrogen by cells incubated in anaerobic vessels in the absence of acetylene. In the presence of 0.01 atmospheres of acetylene, however, nitrous oxide was not reduced. Ethylene was not produced, nor did it influence the rate of nitrous oxide reduction when provided instead of acetylene. Cells exposed to 0.01 atmospheres of acetylene for as long as 400 min were able to reduce nitrous oxide after removal of acetylene at a rate comparable to that of cells not exposed to acetylene. Acetylene did not affect the production or functioning of assimilatory nitrate or nitrite reductase in axenic cultures of Enterobacter aerogenes or Trichoderma uride. While exposed to acetylene, bacteria in marine sediment slurries produced measurable quantities of nitrous oxide from glucose- or acetate-dependent reduction of added nitrate. Possible use of acetylene blockage for measurement of denitrification in unamended marine sediments is discussed.  相似文献   

4.
Abstract Experiments were carried out with slurries of saltmarsh sediment to which varying concentrations of nitrate were added. The acetylene blocking technique was used to measure denitrification by accumulation of nitrous oxide, while reduction of nitrate to nitrite and ammonium was also measured. There was good recovery of reduced nitrate and at the smallest concentration of nitrate used (250 μM) there was approximately equal reduction to either ammonium or nitrous oxide (denitrification). Nitrite was only a minor end-product of nitrate reduction. As the nitrate concentration was increased the proportion of the nitrate which was denitrified to nitrous oxide increased, to 83% at the greatest nitrate concentration used (2 mM), while reduction to ammonium correspondingly decreased. This change was attributed either to a greater competitiveness by the denitrifiers for nitrate as the ratio of electron donor to electron acceptor decreased; or to the increased production of nitrite rather than ammonium by fermentative bacteria under high nitrate, the nitrite then being reduced to nitrous oxide by denitrifying bacteria.  相似文献   

5.
A synthetic growth medium was purified with the chelator 1,5-diphenylthiocarbazone to study the effects of copper on partial reactions and product formation of nitrite respiration in Pseudomonas perfectomarinus. This organism grew anaerobically in a copper-deficient medium with nitrate or nitrite as the terminal electron acceptor. Copper-deficient cells had high activity for reduction of nitrate, nitrite, and nitric oxide, but little activity for nitrous oxide reduction. High rates of nitrous oxide reduction were observed only in cells grown on a copper-sufficient (1 micro M) medium. Copper-deficient cells converted nitrate or nitrite initially to nitrous oxide instead of dinitrogen, the normal end product of nitrite respiration in this organism. In agreement with this was the finding that anaerobic growth of P. perfectomarinus with nitrous oxide as the terminal electron acceptor required copper. This requirement was not satisfied by substitution of molybdenum, zinc, nickel, cobalt, or manganese for copper. Reconstitution of nitrous oxide reduction in copper-deficient cells was rapid on addition of a small amount of copper, even though protein synthesis was inhibited. The results indicate an involvement of copper protein(s) in the last step of nitrite respiration in P. perfectomarinus. In addition we found that nitric oxide, a presumed intermediate of nitrite respiration, inhibited nitrous oxide reduction.  相似文献   

6.
Denitrification by Thiobacillus denitrificans "RT" strain was investigated using manometry and gas chromatography. 1. From nitrate, resting cells produced only nitrogen anaerobically with thiosulfate as the electron donor. The data suggest that nitrate was assimilated and dissimilated by the same nitrate reductase, assayed with benzyl-viologen as the electron donor. 2. From nitrite, whole cells produced nitric oxide, nitrous oxide and nitrogen, using thiosulfate as the electron donor; nitrogen was the final product of the reduction. Crude extract reduced nitrite to nitrogen with p-phenylene-diamine and dimethyl-p-phenylene diamine as the electron donors, and produced nitric oxide, nitrous oxide and nitrogen with tetramethyl-p-phenylene-diamine as the electron donor. Nitrite was reduced to nitric oxide and nitrous oxide by crude extract using ascorbate-phenazine methosulfate as the electron donor. 3. From nitric oxide, whole cells produced nitrous oxide and nitrogen using thiosulfate as the electron donor, nitrogen was the final reduction product. Nitric oxide was reduced to nitrous oxide by crude extract with the ascorbate-phenazine methosulfate system. 4. Whole cells reduced nitrous oxide to nitrogen with thiosulfate as the electron donor. It was not possible to detect any nitrous oxide reductase activity in crude extract. 5. A scheme was of denitrification by Thiobacillus denitrificans "RT" strain.  相似文献   

7.
The kinetics of denitrification and the causes of nitrite and nitrous oxide accumulation were examined in resting cell suspensions of three denitrifiers. An Alcaligenes species and a Pseudomonas fluorescens isolate characteristically accumulated nitrite when reducing nitrate; a Flavobacterium isolate did not. Nitrate did not inhibit nitrite reduction in cultures grown with tungstate to prevent formation of an active nitrate reductase; rather, accumulation of nitrite seemed to depend on the relative rates of nitrate and nitrite reduction. Each isolate rapidly reduced nitrous oxide even when nitrate or nitrite had been included in the incubation mixture. Nitrate also did not inhibit nitrous oxide reduction in Alcaligenes odorans, an organism incapable of nitrate reduction. Thus, added nitrate or nitrite does not always cause nitrous oxide accumulation, as has often been reported for denitrifying soils. All strains produced small amounts of nitric oxide during denitrification in a pattern suggesting that nitric oxide was also under kinetic control similar to that of nitrite and nitrous oxide. Apparent Km values for nitrate and nitrite reduction were 15 μM or less for each isolate. The Km value for nitrous oxide reduction by Flavobacterium sp. was 0.5 μM. Numerical solutions to a mathematical model of denitrification based on Michaelis-Menten kinetics showed that differences in reduction rates of the nitrogenous compounds were sufficient to account for the observed patterns of nitrite, nitric oxide, and nitrous oxide accumulation. Addition of oxygen inhibited gas production from 13NO3 by Alcaligenes sp. and P. fluorescens, but it did not reduce gas production by Flavobacterium sp. However, all three isolates produced higher ratios of nitrous oxide to dinitrogen as the oxygen tension increased. Inclusion of oxygen in the model as a nonspecific inhibitor of each step in denitrification resulted in decreased gas production but increased ratios of nitrous oxide to dinitrogen, as observed experimentally. The simplicity of this kinetic model of denitrification and its ability to unify disparate observations should make the model a useful guide in research on the physiology of denitrifier response to environmental effectors.  相似文献   

8.
(1) Under anaerobic conditions the respiratory chain in cells of Paracoccus denitrificans, from late exponential cultures grown anaerobically with nitrate as electron acceptor and succinate as carbon source, has been shown to reduce added nitrate via nitrite and nitrous oxide to nitrogen without any accumulation of these intermediates. (2) Addition of nitrous oxide to cells reducing nitrate strongly inhibited the latter reaction. The inhibition was reversed by preventing electron flow to nitrous oxide with either antimycin or acetylene. Electron flow to nitrous oxide thus resembles electron flow to oxygen in its inhibitory effect on nitrate reduction. In contrast, addition of nitrite to an anaerobic suspension of cells reducing nitrate resulted in a stimulation of nitrate reductase activity. Usually, addition of nitrite also partially overcame the inhibitory effect of nitrous oxide on nitrate reduction. The reason why added nitrous oxide, but not nitrite, inhibits nitrate reduction is suggested to be related to the higher reductase activity of the cells for nitrous oxide compared with nitrite. Explanations for the unexpected stimulation of nitrate reduction by nitrite in the presence or absence of added nitrous oxide are considered. (3) Nitrous oxide reductase was shown to be a periplasmic protein that competed with nitrite reductase for electrons from reduced cytochrome c. Added nitrous oxide strongly inhibited the reduction of added nitrite. (4) Nitrite reductase activity of cells was strongly inhibited by oxygen in the presence of physiological reductants, but nitrite reduction did occur in the presence of oxygen when isoascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine was the reductant. It is concluded that competition for available electrons by two oxidases, cytochrome aa3 and cytochrome o, severely restricted electron flow to the nitrite reductase (cytochrome cd). For this reason it is unlikely that the oxidase activity of this cytochrome is ever functional in cells. (5) The mechanism by which electron flow to oxygen or nitrous oxide inhibits nitrate reduction in cells has been investigated. It is argued that relatively small changes in the extent of reduction of ubiquinone, or of another component of the respiratory chain with similar redox potential, critically determine the capacity for reducing nitrate. The argument is based on: (i) the response of an anthroyloxystearic acid fluorescent probe that is sensitive to changes in the oxidation state of ubiquinone; (ii) consideration of the total rates of electron flow through ubiquinone both in the presence of oxygen and in the presence of nitrate under anaerobic conditions; (iii) use of relative extents of oxidation of b-type cytochromes as an indicator of ubiquinone redox state, especially the finding that b-type cytochrome of the antimycin-sensitive part of the respiratory chain is more oxidised in the presence of added nitrous oxide, which inhibits nitrate reduction, than in the presence of added nitrite which does not inhibit. Arguments against b- or c-type cytochromes themselves controlling nitrate reduction are given. (6) In principle, control on nitrate reduction could be exerted either upon electron flow or upon the movement of nitrate to the active site of its reductase. The observations that inverted membrane vesicles and detergent-treated cells reduced nitrate and oxygen simultaneously at a range of total rates of electron flow are taken to support the latter mechanism. The failure of an additional reductant, durohydroquinone, to activate nitrate reduction under aerobic conditions in the presence of succinate is also evidence that it is not an inadequate supply of electrons that prevents the functioning of nitrate reductase under aerobic conditions. (7) In inverted membrane vesicles the division of electron flow between nitrate and oxygen is determined by a competition mechanism, in contrast to cells. This change in behaviour upon converting cells to vesicles cannot be attributed to loss of cytochrome c, and therefore of oxidase activity, from the vesicles because a similar change in behaviour was seen with vesicles prepared from cells of a cytochrome c-deficient mutant.  相似文献   

9.
The molar growth yields of Pseudomonas denitrificans, for nitrate, nitrite and nitrous oxide, were determined in chemostat culture under electron acceptor-limited conditions. Glutamate was used as the source of energy, carbon and nitrogen. The catabolic pattern was identical, irrespective of the terminal electron acceptors. The molar growth yields, corrected for maintenance energy, were 28-6 g/mol nitrate, 16-9 g/mol nitrite and 8-8 g/mol nitrous oxide. The energy yield, expressed on an electron basis, was proportional to the oxidation number of the nitrogen: nitrate (plus 5), nitrite (plus 3) and nitrous oxide (plus 1). It was concluded that oxidative phosphorylation occurs to a similar extent in each of the electron transport chains associated with the reduction of nitrate to nitrite, nitrite to nitrous oxide and nitrous oxide to nitrogen.  相似文献   

10.
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification.  相似文献   

11.
15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.  相似文献   

12.
Abstract Gaschromatographic analysis shows that whole cells of Paracoccus denitrificans produce dinitrogen in the absence and nitrous oxide in the presence of thiocyanate during nitrate reduction. NADH nitrate reductase activity in vesicles is much more sensitive to thiocyanate than either NADH oxidase activity in vesicles or reduction of nitrate by endogenous substrates in whole cells. NADH nitrate reductase activity is not inhibited and NADH oxidase activity is partially inhibited by antimycin A in vesicles. Production of nitrous oxide from nitrate in cells is completely inhibited by the simultaneous presence of thiocyanate and Triton X-100. Carbonylcyanide m -chlorophenylhydrazone does not cause a lag phase in reduction of nitrate by NADH in vesicles, in contrast to the situation in cells.  相似文献   

13.
Denitrification by fungi   总被引:15,自引:0,他引:15  
Many fungi in the centre of the group of Fusarium and its teleomorphs were shown to be capable of reducing nitrite anaerobically to form nitric oxide (NO), nitrous oxide (N2O), and/or dinitrogen (N2). Several strains could reduce nitrate as well. Nitrous oxide was the major product of the reduction of nitrate or nitrite. Several fungi could also form N2. When [15]nitrite was used as substrate for the N2-forming denitrification, 15N2O, 15NO, and 14N15N were obtained as the products. These results demonstrated that, unexpectedly, many fungi have denitrifying abilities. It was also shown that the fungal system contains a unique reaction, formation of a hybrid dinitrogen.  相似文献   

14.
Pseudomonas perfectomarinus was found to grow anaerobically at the expense of nitrate, nitrite, or nitrous oxide but not chlorate or nitric oxide. In several repetitive experiments, anaerobic incubation in culture media containing nitrate revealed that an average of 82% of the cells in aerobically grown populations were converted to the capacity for respiration of nitrate. Although they did not form colonies under these conditions, the bacteria synthesized the denitrifying enzymes within 3 hr in the absence of oxygen or another acceptable inorganic oxidant. This was demonstrated by the ability, after anaerobic incubation, of cells and of extracts to reduce nitrite, nitric oxide, and nitrous oxide to nitrogen. From crude extracts of cells grown on nitrate, nitrite, or nitrous oxide, separate complex fractions were obtained that utilized reduced nicotinamide adenine dinucleotide as the source of electrons for the reduction of (i) nitrite to nitric oxide, (ii) nitric oxide to nitrous oxide, and (iii) nitrous oxide to nitrogen. Gas chromatographic analyses revealed that each of these fractions reduced only one of the nitrogenous oxides.  相似文献   

15.
Metalloenzymes of the denitrification pathway   总被引:2,自引:0,他引:2  
  相似文献   

16.
Abstract Denitrification in intact sediment cores was measured by the acetylene inhibition technique and compared with the nitrate flux between water and sediment. Less than half of the nitrate-N consumed by the sediment could be recovered as nitrous oxide-N. The low recovery rate of nitrous oxide from intact sediment cores indicated losses of nitrous oxide by diffusion down to nitrate-free sediment layers, where reduction of nitrous oxide may take place. In sediment slurries 100% of nitrate-N could be recovered as nitrous oxide-N as long as the nitrate concentration in the liquid phase was above 10 μM. Nitrous oxide added to nitrate-free sediment slurries was reduced regardless of whether acetylene was present or not. Therefore denitrification may be significantly underestimated by this method.  相似文献   

17.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

18.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

19.
Tn5 was used to generate mutants that were deficient in the dissimilatory reduction of nitrite for Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. Three types of mutants were isolated. The first type showed a lack of growth on nitrate, nitrite, and nitrous oxide. The second type grew on nitrate and nitrous oxide but not on nitrite (Nir-). The two mutants of this type accumulated nitrite, showed no nitrite reductase activity, and had no detectable nitrite reductase protein bands in a Western blot (immunoblot). Tn5 insertions in these two mutants were clustered in the same region and were within the structural gene for nitrite reductase. The third type of mutant grew on nitrate but not on nitrite or nitrous oxide (N2O). The mutant of this type accumulated significant amounts of nitrite, NO, and N2O during anaerobic growth on nitrate and showed a slower growth rate than the wild type. Diethyldithiocarbamic acid, which inhibited nitrite reductase activity in the wild type, did not affect NO reductase activity, indicating that nitrite reductase did not participate in NO reduction. NO reductase activity in Nir- mutants was lower than that in the wild type when the strains were grown on nitrate but was the same as that in the wild type when the strains were grown on nitrous oxide. These results suggest that the reduction of NO and N2O was carried out by two distinct processes and that mutations affecting nitrite reduction resulted in reduced NO reductase activity following anaerobic growth with nitrate.  相似文献   

20.
Resting cells of Corynebacterium nephridii reduce nitrate, nitrite, and nitric oxide to nitrous oxide under anaerobic conditions. Nitrous oxide production from nitrite was optimal from pH 7.0 to 7.4. The stoichiometry of nitrous oxide production from nitrite was 99% of the theoretical-two moles of nitrite was used for each mole of nitrous oxide detected. Hydroxylamine increases gas evolution from nitrite but inhibits the reduction of nitric oxide to nitrous oxide. Hydroxylamine is converted to nitrogenous gas(es) by resting cells only in the presence of nitrite. Under certain conditions nitric oxide, as well as nitrous oxide, was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号