首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Filament assembly from profilin-actin   总被引:2,自引:0,他引:2  
Profilin plays a major role in the assembly of actin filament at the barbed ends. The thermodynamic and kinetic parameters for barbed end assembly from profilin-actin have been measured turbidimetrically. Filament growth from profilin-actin requires MgATP to be bound to actin. No assembly is observed from profilin-CaATP-actin. The rate constant for association of profilin-actin to barbed ends is 30% lower than that of actin, and the critical concentration for F-actin assembly from profilin-actin units is 0.3 microM under physiological ionic conditions. Barbed ends grow from profilin-actin with an ADP-Pi cap. Profilin does not cap the barbed ends and is not detectably incorporated into filaments. The EDC-cross-linked profilin-actin complex (PAcov) both copolymerizes with F-actin and undergoes spontaneous self-assembly, following a nucleation-growth process characterized by a critical concentration of 0.2 microM under physiological conditions. The PAcov polymer is a helical filament that displays the same diffraction pattern as F-actin, with layer lines at 6 and 36 nm. The PAcov filaments bound phalloidin with the same kinetics as F-actin, bound myosin subfragment-1, and supported actin-activated ATPase of myosin subfragment-1, but they did not translocate in vitro along myosin-coated glass surfaces. These results are discussed in light of the current models of actin structure.  相似文献   

2.
The role of ATP hydrolysis for kinesin processivity   总被引:1,自引:0,他引:1  
Conventional kinesin is a highly processive, plus-end-directed microtubule-based motor that drives membranous organelles toward the synapse in neurons. Although recent structural, biochemical, and mechanical measurements are beginning to converge into a common view of how kinesin converts the energy from ATP turnover into motion, it remains difficult to dissect experimentally the intermolecular domain cooperativity required for kinesin processivity. We report here our pre-steady-state kinetic analysis of a kinesin switch I mutant at Arg(210) (NXXSSRSH, residues 205-212 in Drosophila kinesin). The results show that the R210A substitution results in a dimeric kinesin that is defective for ATP hydrolysis and a motor that cannot detach from the microtubule although ATP binding and microtubule association occur. We propose a mechanistic model in which ATP binding at head 1 leads to the plus-end-directed motion of the neck linker to position head 2 forward at the next microtubule binding site. However, ATP hydrolysis is required at head 1 to lock head 2 onto the microtubule in a tight binding state before head 1 dissociation from the microtubule. This mechanism optimizes forward movement and processivity by ensuring that one motor domain is tightly bound to the microtubule before the second can detach.  相似文献   

3.
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   

4.
Eg5/KSP is a homotetrameric, Kinesin-5 family member whose ability to cross-link microtubules has associated it with mitotic spindle assembly and dynamics for chromosome segregation. Transient-state kinetic methodologies have been used to dissect the mechanochemical cycle of a dimeric motor, Eg5-513, to better understand the cooperative interactions that modulate processive stepping. Microtubule association, ADP release, and ATP binding are all fast steps in the pathway. However, the acid-quench analysis of the kinetics of ATP hydrolysis with substrate in excess of motor was unable to resolve a burst of product formation during the first turnover event. In addition, the kinetics of P(i) release and ATP-promoted microtubule-Eg5 dissociation were observed to be no faster than the rate of ATP hydrolysis. In combination the data suggest that dimeric Eg5 is the first kinesin motor identified to have a rate-limiting ATP hydrolysis step. Furthermore, several lines of evidence implicate alternating-site catalysis as the molecular mechanism underlying dimeric Eg5 processivity. Both mantATP binding and mantADP release transients are biphasic. Analysis of ATP hydrolysis through single turnover assays indicates a surprising substrate concentration dependence, where the observed rate is reduced by half when substrate concentration is sufficiently high to require both motor domains of the dimer to participate in the reaction.  相似文献   

5.
The RecA protein forms nucleoprotein filaments on DNA, and individual monomers within the filaments hydrolyze ATP. Assembly and disassembly of filaments are both unidirectional, occurring on opposite filament ends, with disassembly requiring ATP hydrolysis. When filaments form on duplex DNA, RecA protein exhibits a functional state comparable to the state observed during active DNA strand exchange. RecA filament state was monitored with a coupled spectrophotometric assay for ATP hydrolysis, with changes fit to a mathematical model for filament disassembly. At 37 °C, monomers within the RecA-double-stranded DNA (dsDNA) filaments hydrolyze ATP with an observed kcat of 20.8 ± 1.5 min−1. Under the same conditions, the rate of end-dependent filament disassembly (koff) is 123 ± 16 monomers per minute per filament end. This rate of disassembly requires a tight coupling of the ATP hydrolytic cycles of adjacent RecA monomers. The relationship of kcat to koff infers a filament state in which waves of ATP hydrolysis move unidirectionally through RecA filaments on dsDNA, with successive waves occurring at intervals of approximately six monomers. The waves move nearly synchronously, each one transiting from one monomer to the next every 0.5 s. The results reflect an organization of the ATPase activity that is unique in filamentous systems, and could be linked to a RecA motor function.  相似文献   

6.
The transfer of recA protein from a fluorescently modified single-stranded DNA, containing 1,N6-ethenoadenosine and 3,N4-ethenocytosine, to polydeoxythymidylic acid (poly(dT)) was shown to occur by a complex mechanism in both the absence and presence of ADP (Menetski, J. P., and Kowalczykowski, S. C. (1987) J. Biol. Chem. 262, 2085-2092). A part of the mechanism involves the formation of a kinetic ternary intermediate. Since the binding and hydrolysis of ATP by recA protein is involved in many of the recA protein in vitro activities, we have analyzed the effect of ATP on the transfer reaction. In the presence of ATP, the transfer reaction is dependent on the concentration of the competitor single-stranded DNA, poly(dT). This result suggests that transfer does not occur by a simple dissociation mechanism. The reaction occurs via two kinetically distinct species of protein X DNA complexes with properties that are similar to those characterized for the transfer reaction in the absence of ATP. There is a complicated effect of nucleotide concentration on the rate of transfer. At low concentrations of ATP (less than 50 microM), increasing nucleotide concentration increases the rate of transfer; this is similar to the effect of ADP. However, at high concentrations of ATP (greater than 50 microM), increasing ATP concentration decreases the rate of transfer. Finally, the processivity of ATP hydrolysis during transfer was found to increase with increases in ATP concentration. Less than one ATP molecule was hydrolyzed per transfer event at low ATP concentrations (less than 20 microM) while greater than 50 molecules were hydrolyzed at high ATP concentration (greater than 250 microM). These data suggest that the rate of transfer is not directly coupled to the rate of hydrolysis.  相似文献   

7.
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R ( recA2201 ) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo . We have combined the K72R variant of RecA with another mutation, RecA E38K ( recA730 ). In vitro , the double mutant RecA E38K/K72R ( recA730,2201 ) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro .  相似文献   

8.
Cells sustain high rates of actin filament elongation by maintaining a large pool of actin monomers above the critical concentration for polymerization. Profilin-actin complexes constitute the largest fraction of polymerization-competent actin monomers. Filament elongation factors such as Ena/VASP and formin catalyze the transition of profilin-actin from the cellular pool onto the barbed end of growing filaments. The molecular bases of this process are poorly understood. Here we present structural and energetic evidence for two consecutive steps of the elongation mechanism: the recruitment of profilin-actin by the last poly-Pro segment of vasodilator-stimulated phosphoprotein (VASP) and the binding of profilin-actin simultaneously to this poly-Pro and to the G-actin-binding (GAB) domain of VASP. The actin monomer bound at the GAB domain is proposed to be in position to join the barbed end of the growing filament concurrently with the release of profilin.  相似文献   

9.
Martin SG  Chang F 《Current biology : CB》2006,16(12):1161-1170
BACKGROUND: Formins are a conserved family of actin nucleators responsible for the assembly of diverse actin structures such as cytokinetic rings and filopodia. In the fission yeast Schizosaccharomyces pombe, the formin for3p is necessary for the formation of actin cables, which are bundles of short parallel actin filaments that regulate cell polarity. These filaments are largely organized with their barbed ends facing the cell tip, where for3p is thought to function in their assembly. RESULTS: Here, using a functional for3p-3GFP fusion expressed at endogenous levels, we find that for3p localizes to small dots that appear transiently at cell tips and then move away on actin cables at a rate of 0.3 microm/s. These movements were dependent on the continuous assembly of actin in cables, on the ability of for3p to bind actin within its FH2 domain, and on profilin and bud6p, two formin binding proteins that promote formin activity. Bud6p transiently colocalizes with for3p at the cell tip and stays behind at the cell tip when for3p detaches. CONCLUSIONS: These findings suggest a new model for actin cable assembly: a for3p particle is activated and promotes the assembly of a short actin filament at the cell tip for only seconds. For3p and the actin filament may then be released from the cell tip and carried passively into the cell interior by retrograde flow of actin filaments in the cable. These studies reveal a complex and dynamic cycle of formin regulation and actin cable assembly in vivo.  相似文献   

10.
Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some α-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.  相似文献   

11.
Although the microtubule-binding regions (MTBRs) of both Tau and MAP2 can undergo self-assembly into straight filaments (SFs) in vitro, only the Tau MTBR forms paired helical filaments (PHFs). Moreover, Tau appears to be the exclusive building block of the neuropathic filaments observed in Alzheimer's disease and certain frontotemporal dementias (FTDs). Despite significant conservation in the MTBR sequences, there are two persistently different stretches of amino acids (designated here as Module-A and Module-B) between Tau and MAP2 from a number of organisms. To evaluate the role of charged residues in these modules as potential morphology-specifying elements, we used site-directed mutagenesis to replace selected residues within the MAP2 MTBR by residues at corresponding positions in Tau. We then employed electron microscopy to determine the frequency of occurrence of SF and PHF morphology in filaments assembled from these mutant microtubule-binding regions. Our experimental results indicate that a very small number of residues are especially significant determinants of filament morphology; this inference is also supported by the observation that site-directed substitutions of individual Tau residues into MAP2 Module-B likewise result in the formation of PHF-like structures. Because the Module-B in Tau contains two naturally occurring FTD mutations, residues in this region may play a critical role in neuropathic filament assembly.  相似文献   

12.
In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.  相似文献   

13.
Intermediate filament (IF) proteins belong to a large and diverse gene family with broad representation in vertebrate tissues. Although considered the 'toughest' cytoskeletal fibers, studies in cultured cells have revealed that IF can be surprisingly dynamic and highly regulated. This review examines the diversity of IF assembly behaviors, and considers the ideas that IF proteins are co- or post-translationally assembled into oligomeric precursors, which can be delivered to different subcellular compartments by microtubules or actomyosin and associated motor proteins. Their interaction with other cellular elements via IF associated proteins (IFAPs) affects IF dynamics and also results in cellular networks with properties that transcend those of individual components. We end by discussing how mutations leading to defects in IF assembly, network formation or IF-IFAP association compromise in vivo functions of IF as protectors against environmental stress.  相似文献   

14.
An LMM fragment (Mr 62,000) of myosin has been prepared which has aggregation properties that are sensitive to the presence of Mg.ATP. Aggregation of the LMM by reducing the ionic strength in the presence of 1 mM Mg.ATP produces non-periodic aggregates which gradually rearrange to paracrystals with a 43 nm axial repeat pattern. This fragment includes the C-terminal end of the myosin rod starting at residue 1376. Therefore, at least one of the Mg.ATP binding sites responsible for this effect is located somewhere along this region of the myosin rod. Although assembly of the rod fragment of myosin into paracrystals does not show sensitivity to Mg.ATP, assembly of intact myosin molecules to form filaments does show sensitivity to Mg.ATP. For myosin filaments, assembly initially gives a broad distribution around a mean length of 1.5 microns, which sharpens around the mean length with time. The rearrangement of the LMM rods and intact myosin molecules both induced by the presence of Mg.ATP are probably related. These findings highlight the complexity of the cooperative interactions between different portions of the myosin molecule that are involved in determining the assembly properties of the intact molecule.  相似文献   

15.
A Bejsovec  P Anderson 《Cell》1990,60(1):133-140
We have determined the positions and sequences of 31 dominant mutations affecting a C. elegans muscle myosin heavy chain gene. These mutations alter thick filament structure in heterozygotes by interfering with the ability of wild-type myosin to assemble into stable thick filaments. These assembly-disruptive mutations are missense alleles affecting the globular head of myosin. The most strongly dominant alleles alter highly conserved residues of the myosin ATP binding site, indicating that functions of the myosin ATPase are important for thick filament assembly. Other alleles alter the site at which myosin binds actin.  相似文献   

16.
Fundamental concepts pertaining to the stereochemistry paths of polar additionelimination (nucleophilic substitution) reactions at phosphate phosphorus centers are reviewed and employed to analyze 18O exchange reactions catalyzed by inorganic pyrophosphatase and mitochondrial ATP synthetase. The analysis suggests reasonable choices for the stereochemistry path of the 18O exchanges. This, in turn, permits reasonable choices for the stereochemistry paths of hydrolysis of pyrophosphate catalyzed by pyrophosphatase and of hydrolysis and synthesis of ATP catalyzed by ATP synthetase.  相似文献   

17.
According to the binding-zipper model, the RecA class of ATPase motors converts chemical energy into mechanical force by the progressive annealing of hydrogen bonds between the nucleotide and the catalytic pocket. The role of hydrolysis is to weaken the binding of products, allowing them to be released so that the cycle can repeat. Molecular dynamics can be used to study the unbinding process, but the binding process is more complex, so that inferences about it are made indirectly from structural, mutation, and biochemical studies. Here we present a series of models of varying complexity that illustrate the basic processes involved in force production during ATP binding. These models reveal the role of solvent and geometry in determining the amount of mechanical work that can be extracted from the binding process.  相似文献   

18.
Actin filaments, assembled from highly purified actin from either skeletal muscle or Dictyostelium amoebae, are very stable under physiological ionic conditions. A small and limited amount of exchange of actin filament subunits for unpolymerized actin or subunits in other filaments has been measured by three techniques: fluorescence energy transfer, incorporation of 35S-labelled actin monomers into unlabelled actin filaments, and exchange of [14C]ATP with filament-bound ADP. A 40 kDa protein purified from amoebae destabilizes these otherwise stable filaments in a Ca2+-dependent manner. Myosin purified from Dictyostelium amoebae is phosphorylated both in the tail region of the heavy chain and in one of the light chains. Phosphorylation appears to regulate myosin thick-filament formation.  相似文献   

19.
We examined the role of ATP hydrolysis by the Arp2/3 complex in building the leading edge of a cell by studying the effects of hydrolysis defects on the behavior of the complex in the lamellipodial actin network of Drosophila S2 cells and in a reconstituted, in vitro, actin-based motility system. In S2 cells, nonhydrolyzing Arp2 and Arp3 subunits expanded and delayed disassembly of lamellipodial actin networks and the effect of mutant subunits was additive. Arp2 and Arp3 ATP hydrolysis mutants remained in lamellipodial networks longer and traveled greater distances from the plasma membrane, even in networks still containing wild-type Arp2/3 complex. In vitro, wild-type and ATP hydrolysis mutant Arp2/3 complexes each nucleated actin and built similar dendritic networks. However, networks constructed with Arp2/3 hydrolysis-defective mutants were more resistant to disassembly by cofilin. Our results indicate that ATP hydrolysis on both Arp2 and Arp3 contributes to dissociation of the complex from the actin network but is not strictly necessary for lamellipodial network disassembly.  相似文献   

20.
The critical parameters required for the assembly of myosin filaments with a length distribution comparable to that for native myosin filaments were examined. It was found that: Two steps are required in the dilution of a myosin solution from 0.6M KCl to 0.15M KCl. In Step I the KCl concentration is reduced from 0.6 to 0.3M KCl and in Step II from 0.3 to 0.15M KCl. The rate of change of KCl required for Step I is different than that required for Step II. Increasing the total time of dilution in either Step I or II alone leads to an increase in length and a broadening of the length distribution. In Step I assembly of myosin molecules into nonsedimentable units occurs. These may be the basic units from which the filaments are assembled in Step II. Rapid dilution in Step I alone has no effect on the length distribution obtained at 0.15M KCl, but rapid dilution in Step II alone leads to short filaments (about 0.6 micron). Increasing the time of dilution in Step II alone to 3 hrs or 6 hrs gives a bimodal distribution in lengths with one peak at about 0.8 micron and the other at about 2.2 microns. The length distribution obtained at 0.15M KCl is not critically dependent on information contained in the portion of the filament previously assembled in Step II, but is critically dependent on the rate of change of KCl concentration during the assembly of the rest of the filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号