首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary structure of mammalian ribosomal protein S6   总被引:2,自引:0,他引:2  
Ribosomal protein S6 was isolated from rat liver ribosomes by reversed-phase high-performance liquid chromatography (HPLC) and subjected to cyanogen bromide and proteolytic cleavages. The cleavage fragments were resolved by HPLC and sequenced by automated Edman degradation. The overall amino acid sequence of S6 (249 residues) was determined by alignment of the overlapping sequences of selected cyanogen bromide, chymotryptic, tryptic, and clostripain cleavage fragments. The only protein found to exhibit close homology with the S6 sequence is yeast ribosomal protein S10 (61% sequence identity). Previously, characterized phosphopeptide derivatives of S6 containing phosphorylation sites for adenosine 3',5'-cyclic phosphate dependent and protease-activated protein kinases originate from the carboxy-terminal region of S6 encompassing residues 233-249.  相似文献   

2.
The 2',3'-cyclic phosphate termini are produced, as either intermediates or final products, during RNA cleavage by many different endoribonucleases. Likewise, ribozymes such as hammerheads, hairpins, or the hepatitis delta ribozyme, generate 2',3'-cyclic phosphate ends. Discovery of the RNA 3'-terminal phosphate cyclase has indicated that cyclic phosphate termini in RNA can also be produced by an entirely different mechanism. The RNA 3'-phosphate cyclase converts the 3'-terminal phosphate in RNA into the 2',3'-cyclic phosphodiester in the ATP-dependent reaction which involves formation of the covalent cyclase-AMP and the RNA-N3' pp5' A intermediates. The findings that several eukaryotic and prokaryotic RNA ligases require the 2',3'-cyclic phosphate for the ligation of RNA molecules raised a possibility that the RNA 3'-phosphate cyclase may have an anabolic function in RNA metabolism by generating terminal cyclic groups required for ligation. Recent cloning of a cDNA encoding the human cyclase indicated that genes encoding cyclase-like proteins are conserved among Eucarya, Bacteria, and Archaea. The protein encoded by the Escherichia coli gene was overexpressed and shown to have the RNA 3'-phosphate cyclase activity. This article reviews properties of the human and bacterial cyclases, their mechanism of action and substrate specificity. Possible biological functions of the enzymes are also discussed.  相似文献   

3.
The effects of N6,O2-dibutyryl-adenosine 3',5'-monophosphate (Bt2cAMP) and sodium fluoride on the phosphorylation of ribosomal proteins S6 and on protein synthesis were examined. Rabbit reticulocytes were incubated in a nutritional medium containing 32Pi in the presence and absence of Bt2cAMP (1mM) and 3-isobutyl-1-methyl-xanthine (1mM). In the control cells, four phosphorylated derivatives of S6 were observed, with most of the radioactivity in the monophosphorylated form. Upon addition of cyclic nucleotide, a twofold increase in the phosphorylation of ribosomal protein S6 was observed. This was accompanied by an increase of radioactive phosphate in the diphosphorylated derivative. No alteration in protein synthesis was observed upon addition of cAMP and analogues of cAMP in conjunction with 3-isobutyl-1-methyl-xanthine or theophylline. The effects of sodium fluoride on phosphorylation of S6 and on protein synthesis were examined also. At 5 mM sodium fluoride, protein synthesis was inhibited by 85%. A 2.5-fold increase in the phosphorylation of ribosomal protein S6 was observed with an accumulation of 32Pi in the diphosphorylated, triphosphorylated and tetraphosphorylated derivatives. Inhibition of protein synthesis coincided with an increase in the more highly phosphorylated derivatives, whereas an increase of radioactive phosphate in the diphosphorylated derivative could not be correlated with an alteration in globin synthesis.  相似文献   

4.
We previously identified the cvfA gene (SA1129) as a novel virulence regulator in Staphylococcus aureus using the silkworm infection model. The cvfA gene, which is conserved among various pathogenic bacteria, contributes to the expression of the agr locus, a global virulence regulator that controls the expression of genes encoding various exoproteins, such as hemolysin. CvfA protein has a transmembrane domain, an RNA binding domain (KH domain), and a metal-dependent phosphohydrolase domain (HD domain). We report here the purification of recombinant CvfA protein from a membrane fraction of Escherichia coli by measuring its phosphodiesterase activity. Purified CvfA protein hydrolyzed the phosphodiester linkage of 2',3'-cyclic AMP, 2',3'-cyclic GMP, and 2',3'-cyclic phosphate at the 3'-terminal of RNA in the presence of Mn(2+). CvfA mutant proteins with amino acid substitutions in the HD domain had significantly decreased phosphodiesterase activity. Furthermore, mutated cvfA genes encoding proteins with low phosphodiesterase activity did not complement the decreased hemolysin production or the attenuated killing ability against silkworms in the cvfA deletion mutant. These results suggest that the phosphodiesterase activity of CvfA protein is required for virulence in S. aureus.  相似文献   

5.
The phosphorylation of troponin I from cardiac muscle.   总被引:1,自引:0,他引:1  
1. Troponin I isolated from fresh cardiac muscle by affinity chromatography contains about 1.9 mol of covalently bound phosphate/mol. Similar preparations of white-skeletal-muscle troponin I contain about 0.5 mol of phosphate/mol. 2. A 3':5'-cyclic AMP-dependent protein kinase and a protein phosphatase are associated with troponin isolated from cardiac muscle. 3. Bovine cardiac 3':5'-cyclic AMP-dependent protein kinase catalyses the phosphorylation of cardiac troponin I 30 times faster than white-skeletal-muscle troponin I. 4. Troponin I is the only component of cardiac troponin phosphorylated at a significant rate by the endogenous or a bovine cardiac 3':5'-cyclic AMP-dependent protein kinase. 5. Phosphorylase kinase catalyses the phosphorylation of cardiac troponin I at similar or slightly faster rates than white-skeletal-muscle troponin I. 6. Troponin C inhibits the phosphorylation of cardiac and skeletal troponin I catalysed by phosphorylase kinase and the phosphorylation of white skeletal troponin I catalysed by 3':5'-cyclic AMP-dependent protein kinase; the phosphorylation of cardiac troponin I catalysed by the latter enzyme is not inhibited.  相似文献   

6.
The enzyme, RNA cyclase, has been purified from cell-free extracts of HeLa cells approximately 6000-fold. The enzyme catalyzes the conversion of 3'-phosphate ends of RNA chains to the 2',3'-cyclic phosphate derivative in the presence of ATP or adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) and Mg2+. The formation of 1 mol of 2',3'-cyclic phosphate ends is associated with the disappearance of 1 mol of 3'-phosphate termini and the hydrolysis of 1 mol of ATP gamma S to AMP and thiopyrophosphate. No other nucleotides could substitute for ATP or ATP gamma S in the reaction. The reaction catalyzed by RNA cyclase was not reversible and exchange reactions between [32P]pyrophosphate and ATP were not detected. However, an enzyme-AMP intermediate could be identified that was hydrolyzed by the addition of inorganic pyrophosphate or 3'-phosphate terminated RNA chains but not by 3'-OH terminated chains or inorganic phosphate. 3'-[32P](Up)10Gp* could be converted to a form that yielded, (Formula: see text) after degradation with nuclease P1, by the addition of wheat germ RNA ligase, 5'-hydroxylpolynucleotide kinase, RNA cyclase, and ATP. This indicates that the RNA cyclase had catalyzed the formation of the 2',3'-cyclic phosphate derivative, the kinase had phosphorylated the 5'-hydroxyl end of the RNA, and the wheat germ RNA ligase had catalyzed the formation of a 3',5'-phosphodiester linkage concomitant with the conversion of the 2',3'-cyclic end to a 2'-phosphate terminated residue.  相似文献   

7.
Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were identified by two-dimensional gel electrophoresis. Almost identical results were obtained when ribosomal subunits from HeLa or ascites-tumour cells were used. About 50-60% of the total radioactive phosphate incorporated into small-subunit ribosomal proteins by either kinase was associated with protein S6. In 90 min between 0.7 and 1.0 mol of phosphate/mol of protein S6 was incorporated by the catalytic subunit of cyclic AMP-dependent protein kinase. Of the other proteins, S3 and S7 from the small subunit and proteins L6, L18, L19 and L35 from the large subunit were predominantly phosphorylated by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates by either kinase; (3) proteins S7 and L29 were almost exclusively phosphorylated by the cyclic AMP-dependent protein kinase; (4) protein S6 and most of the other proteins were phosphorylated about two or three times faster by the cyclic AMP-dependent than by the cyclic GMP-dependent enzyme.  相似文献   

8.
The 3',5'-cyclic phosphate prodrug 9-[β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methylribofuranosyl]-2-amino-6-ethoxypurine, PSI-352938 1, has demonstrated promising anti-HCV efficacy in vitro and in human clinical trials. A structure-activity relationship study of the nucleoside 3',5'-cyclic phosphate series of β-d-2'-deoxy-2'-α-fluoro-2'-β-C-methylribofuranosyl nucleoside prodrugs was undertaken and the anti-HCV activity and in vitro safety profile were assessed. Cycloalkyl 3',5'-cyclic phosphate prodrugs were shown to be significantly more potent as inhibitors of HCV replication than branched and straight chain alkyl 3',5'-cyclic phosphate prodrugs. No cytotoxicity and mitochondrial toxicity for prodrugs 12, 13 and 19 were observed at concentrations up to 100μm in vitro. Cycloalkyl esters of 3',5'-cyclic phosphate nucleotide prodrugs demonstrated the ability to produce high levels of active triphosphate in clone-A cells and primary human hepatocytes. Compounds 12, 13 and 19 also demonstrated the ability to effectively deliver in vivo high levels of active nucleoside phosphates to rat liver.  相似文献   

9.
Several new 8-alkyl and 8-acyl derivatives of quanosie 3',5'-cyclic phosphate (cGMP) and inosine 3',5'-cyclic phosphate (cGMP) were prepared by direct alkylation or acylation of the parent cyclic nucleotide via free radicals generated in situ. These compounds have been examined for their ability to stimulate a cGMP-dependent protein kinase, and several of the cGMP derivatives were as active in this regard as cGMP. These compounds proved to be quite ineffective when tested for their ability to activate an adenosine 3',5'-cyclic phosphate (cAMP) dependent protein kinase. In addition, these 8-substituted cGMP derivatives are not substrates for a phosphodiesterase preparation from rabbit kidney, but do show inhibition of the hydrolysis of cAMP by crude phosphodiesterase preparations from rabbit lung and beef heart.  相似文献   

10.
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya.  相似文献   

11.
Investigations were carried out on the phosphorylation of ribosomal proteins in vivo in cerebral cortices of immature rats. Two-dimensional electrophoresis revealed that the cerebral 40S subunit contained at least four ribosomal proteins which were phosphorylated in animals given [32P]orthophosphate intracisternally. These proteins exhibited electrophoretic properties similar to those of the constitutive basic proteins S2, S3a, S5 and S6. The cerebral 60S subunit contained several proteins that were phosphorylated in vivo, including three basic proteins with electrophoretic mobilities similar to those of ribosomal proteins L6, L14 and L19. Four other proteins associated with the 60S subunit that were more acidic were also phosphorylated. Phosphorylated congeners of 40S and 60S ribosomal proteins could often be detected in distinct protein-stained spots on two-dimensional electrophoretograms. The cerebral S6 protein consisted of at least five distinct species in different states of phosphorylation. Administration of N6O-2' dibutyryl cyclic AMP increased the proportion of the more phosphorylated congeners of the S6 protein, but appeared to have little or no effect on phosphorylation of other cerebral ribosomal proteins. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated S6-protein phosphorylation; N2O2'-dibutyryl cyclic GMP had no effect on this process. These observations indicate that several ribosomal proteins of both subunits are normally phosphorylated in rat cerebral cortex in situ. The results also suggest that selective and specific alterations in the phosphorylation state of the S6 ribosomal protein of the cerebral 40S subunit may accompany the production of cyclic AMP during neural activation.  相似文献   

12.
A new route for the synthesis of 1-(beta-D-allofuranosyl)uracil ("allo-uridine") and the corresponding 6'-deoxy-derivative ("6'-deoxy-allo-uridine") as well as for 1-(beta-D-altrofuranosyl) uracil ("altro-uridine") is described. NMR studies of allo-uridine revealed a preferred conformation with the base in anti-position, C-2'-endo-pucker of the sugar moiety, the 5'-OH-group above the furanose ring and the 5'-CH2OH-group in a gt position with the OH-group in the plane of the furanose ring. The same conformation is found for the 5'- and 6'-phosphate, indicated by the influence of the phosphate group on the H-6 signal. Allo-uridine is phosphorylated by the phosphotransferases from carrot and from malt sprouts only in the 6'-position. The phosphate ester is hydrolysed by unspecific phosphatases but not by 5'-nucleotidase. A (3' leads to 6')-dinucleoside phosphate is formed by pancreatic ribonuclease with 2',3'-cyclic cytidylic acid and allo-uridine. It is split by nuclease S1, but not by snake-venom phosphodiesterase. It has no primer activity for polynucleotide phosphorylase. All-uridine 6'-diphosphate could not be prepared enzymatically by nucleotide kinase or by chemical methods, where 5',6'-cyclic phosphates are formed, which are hydrolysed exclusively to 6'-monophosphates.  相似文献   

13.
Degradation of the 2'-phosphates, 3'-phosphates, 5'-phosphates, 2':3'-cyclic phosphates, 3':5'-cyclic phosphates, and 5'-(p-nitrophenylphosphates) of adenosine, guanosine, cytidine, and uridine catalyzed by Fusarium phosphodiesterase-phosphomonoesterase was followed by means of high performance liquid chromatography. All the nucleotides were susceptible to the enzyme to a greater or lesser degree, and the kinetic constants, Km and kcat, were determined at pH 5.3 and 37 degrees C. These constants were affected by both the nucleoside moiety and the position of the phosphate. Judged from kcat/Km, the 3'-phosphates, 2':3'-cyclic phosphates, and 5'-(p-nitrophenylphosphates) were good substrates, whereas the 2'-phosphates, 5'-phosphates, and 3':5'-cyclic phosphates were poor substrates except for adenosine 2'-phosphate, adenosine 5'-phosphate, and cytidine 5'-phosphate, which were hydrolyzed relatively easily. Among the phosphodiesters, the 2':3'-cyclic phosphates of adenosine, guanosine, and cytidine; and the 3':5'-cyclic phosphates of adenosine and cytidine were degraded into nucleoside and inorganic phosphate without release of intermediary phosphomonoester into the medium. Other phosphodiesters were degraded stepwise releasing definite intermediates.  相似文献   

14.
The administration of glucagon, adenosine 3':5'-monophosphate, or N6,O2'-dibutyryl adenosine 3':5'-monophosphate caused an increase in the phosphorylation of rat liver ribosomes. The increase (approximately 3-fold) was in the protein of the small ribosomal subunit. The proteins were separated by two-dimensional polyacrylamide gel electrophoresis and radioautographs were made of the gels. The effect of the hormone and of the nucleotides was entirely due to an increase in the phosphorylation of the 40 S ribosomal subunit protein S6.  相似文献   

15.
During growth under conditions of phosphate limitation, suspension-cultured cells of tomato (Lycopersicon esculentum Mill.) secrete phosphodiesterase activity in a similar fashion to phosphate starvation-inducible ribonuclease (RNase LE), a cyclizing endoribonuclease that generates 2':3'-cyclic nucleoside monophosphates (NMP) as its major monomeric products (T. Nürnberger, S. Abel, W. Jost, K. Glund [1990] Plant Physiol 92: 970-976). Tomato extracellular phosphodiesterase was purified to homogeneity from the spent culture medium of phosphate-starved cells and was characterized as a cyclic nucleotide phosphodiesterase. The purified enzyme has a molecular mass of 70 kD, a pH optimum of 6.2, and an isoelectric point of 8.1. The phosphodiesterase preparation is free of any detectable deoxyribonuclease, ribonuclease, and nucleotidase activity. Tomato extracellular phosphodiesterase is insensitive to EDTA and hydrolyzes with no apparent base specificity 2':3'-cyclic NMP to 3'-NMP and the 3':5'-cyclic isomers to a mixture of 3'-NMP and 5'-NMP. Specific activities of the enzyme are 2-fold higher for 2':3'-cyclic NMP than for 3':5'-cyclic isomers. Analysis of monomeric products of sequential RNA hydrolysis with purified RNase LE, purified extracellular phosphodiesterase, and cleared -Pi culture medium as a source of 3'-nucleotidase activity indicates that cyclic nucleotide phosphodiesterase functions as an accessory ribonucleolytic activity that effectively hydrolyzes primary products of RNase LE to substrates for phosphate-starvation-inducible phosphomonoesterases. Biosynthetical labeling of cyclic nucleotide phopshodiesterase upon phosphate starvation suggests de novo synthesis and secretion of a set of nucleolytic enzymes for scavenging phosphate from extracellular RNA substrates.  相似文献   

16.
We examined the ability of protein kinase activities from BHK (baby-hamster kidney) cells infected with pseudorabies virus to catalyse the phosphorylation of ribosomal protein S6 in vitro. When the cytosol from infected cells was fractionated on DEAE-cellulose, 40S ribosomal protein kinase activity was found associated with the two isoforms of the cyclic AMP-dependent protein kinase, protein kinase C and a protein kinase (ViPK, virus-induced protein kinase) only detected in infected cells. The phosphorylation of ribosomal protein by ViPK was of particular interest because the appearance of the protein kinase and the increase in the phosphorylation of protein S6 in infected cells shared a similar time course. At moderate concentrations of KCl the major ribosomal substrate for ViPK was ribosomal protein S7, a protein not found to be phosphorylated in vivo. However, at 600 mM-KCl, or in the presence of 5-10 mM-spermine at 60-150 mM-KCl, the phosphorylation of ribosomal protein S7 was suppressed and ribosomal protein S6 became the major substrate. The maximum stoichiometry of phosphorylation obtained under the latter conditions was 1-2 mol of phosphate/mol of S6, and only mono- and di-phosphorylated forms of S6 were detected on two-dimensional gel electrophoresis. As the infection of BHK cells by pseudorabies virus results in the appearance of phosphorylated species of S6 containing up to 5 mol of phosphate/mol of S6 protein, it appears unlikely that ViPK alone can be responsible for the multiple phosphorylation seen in vivo. Nevertheless, tryptic phosphopeptide analysis did indicate that in vitro ViPK catalysed the phosphorylation of at least one of the sites on ribosomal protein S6 phosphorylated in vivo, so that a contributory role for the enzyme in the phosphorylation in vivo cannot be excluded.  相似文献   

17.
18.
The regulation of protein synthesis at the level of the ribosome was investigated using the model system of ethionine-induced inhibition of protein synthesis. The phosphorylation of ribosomal protein S6 was examined in vivo during ethionine intoxication and during the adenine-induced reversal of ethionine intoxication. The extent of phosphorylation of S6 correlated well with protein synthetic activity observed after ethionine, and ethionine followed by adenine treatments. No clear correlation was observed in the ethionine system between cyclic adenosine 3':5'-monophosphate concentration or the activity of ribosomal protein kinase and the phosphorylation of ribosomal protein S6. A role for a cyclic adenosine 3':5'-monophosphate-dependent ribosomal phosphoprotein phosphatase is postulated.  相似文献   

19.
The steps in the biosynthetic transformation of GTP to 7,8-dihydro-D-erythro-neopterin (H2neopterin), the precursor to the modified folates found in the methanogenic archaea, has been elucidated for the first time in two members of the domain Archaea. In Methanococcus thermophila and Methanobacterium thermoautotrophicum deltaH, it has been demonstrated that H2neopterin 2':3'-cyclic phosphate is an intermediate in this conversion. In addition, the formation of the pterin ring of the H2neopterin 2':3'-cyclic phosphate is catalyzed not by a single enzyme, as is known to occur with GTP cyclohydrolase I in the Eucarya and Bacteria, but rather by two or more enzymes. A 2,4,5-triamino-4(3H)-pyrimidinone-containing molecule, most likely 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-triphosphate, has been identified as an intermediate in the formation of the H2neopterin 2':3'-cyclic phosphate. Synthetic H2neopterin 2':3'-cyclic phosphate was found to be readily hydrolyzed by cell extracts of M. thermophila via the H2neopterin 3'-phosphate to H2neopterin, a known precursor to the pterin portion of methanopterin.  相似文献   

20.
BACKGROUND: The mammalian signal recognition particle (SRP) is an essential cytoplasmic ribonucleoprotein complex involved in targeting signal-peptide-containing proteins to the endoplasmic reticulum. Assembly of the SRP requires protein SRP19 to bind first to helix 6 of the SRP RNA before the signal-peptide-recognizing protein, SRP54, can bind to helix 8 of the RNA. Helix 6 is closed by a GGAG tetraloop, which has been shown to form part of the SRP19-binding site. RESULTS: The high-resolution (2.0 A) structure of a fragment of human SRP RNA comprising 29 nucleotides of helix 6 has been determined using the multiple anomalous dispersion (MAD) method and bromine-labelled RNA. In the crystal the molecule forms 28-mer duplexes rather than the native monomeric hairpin structure, although two chemically equivalent 11 base pair stretches of the duplex represent the presumed native structure. The duplex has highly distorted A-RNA geometry caused by the occurrence of several non-Watson-Crick base pairs. These include a 5'-GGAG-3'/3'-GAGG-5' purine bulge (which replaces the tetraloop) and a 5'-AC-3'/3'-CA-5' tandem mismatch that, depending on the protonation state of the adenine bases, adopts a different conformation in the two native-like parts of the structure. The structure also shows the 2'3'-cyclic phosphate reaction product of the hammerhead ribozyme cleavage reaction. CONCLUSIONS: The 29-mer RNA is the first RNA structure of the human SRP and provides some insight into the binding mode of SRP19. The observed strong irregularities of the RNA helix make the major groove wide enough and flat enough to possibly accommodate an alpha helix of SRP19. The variety of non-canonical base pairs observed enlarges the limited repertoire of irregular RNA folds known to date and the observed conformation of the 2'3'-cyclic phosphate containing Ade29 is consistent with the current understanding of the hammerhead ribozyme reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号