首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After an observer adapts to a moving stimulus, texture within a stationary stimulus is perceived to drift in the opposite direction-the traditional motion aftereffect (MAE). It has recently been shown that the perceived position of objects can be markedly influenced by motion adaptation. In the present study, we examine the selectivity of positional shifts resulting from motion adaptation to stimulus attributes such as velocity, relative contrast, and relative spatial frequency. In addition, we ask whether spatial position can be modified in the absence of perceived motion. Results show that when adapting and test stimuli have collinear carrier gratings, the global position of the object shows a substantial shift in the direction of the illusory motion. When the carrier gratings of the adapting and test stimuli are orthogonal (a configuration in which no MAE is experienced), a global positional shift of similar magnitude is found. The illusory positional shift was found to be immune to changes in spatial frequency and to contrast between adapting and test stimuli-manipulations that dramatically reduce the magnitude of the traditional MAE. The lack of sensitivity for stimulus characteristics other than direction of motion suggests that a specialized population of cortical neurones, which are insensitive to changes in a number of rudimentary visual attributes, may modulate positional representation in lower cortical areas.  相似文献   

2.
An ignored region of the visual field might be monitored by an intermittent full visual analysis or by a more continuous but restricted analysis. We investigated which type of process is more likely in early vision by studying the effects of diverting attention on adaptation to a range of spatial (0.5, 2, 4. and 6 c/deg) and temporal (1.5 and 10 Hz) frequencies. During adaptation, subjects either fixated an unchanging digit (normal attention). or named the sequence of changing digits which formed the fixation point (diverted). The test field was always a static version of the adapting field, and the strength of adaptation was measured through the velocity and duration of subsequent Motion Aftereffects (MAEs). When attention during adaptation was normal MAE durations rose with spatial frequency for the 1.5 Hz stimuli, and declined with spatial frequency for the 10 Hz stimuli. When attention was diverted from the 10 Hz stimuli, MAE durations and velocities fell by a similar amount at all spatial frequencies. However, for the 1.5 Hz stimuli, the effects of diversion were very small at 0.5 c/deg, and rose progressively with spatial frequency, so that MAE reductions were largest at 6 c/deg. It appears that diversion hardly affects the encoding of coarse, slow stimuli, but attenuates the encoding of finer and/or faster stimuli. This is consistent with the idea that during diversion the visual system monitors the scene continuously, but over a restricted range of spatial and temporal scales.  相似文献   

3.
The motion after-effect (MAE) persists in crowding conditions, i.e., when the adaptation direction cannot be reliably perceived. The MAE originating from complex moving patterns spreads into non-adapted sectors of a multi-sector adapting display (i.e., phantom MAE). In the present study we used global rotating patterns to measure the strength of the conventional and phantom MAEs in crowded and non-crowded conditions, and when attention was directed to the adapting stimulus and when it was diverted away from the adapting stimulus. The results show that: (i) the phantom MAE is weaker than the conventional MAE, for both non-crowded and crowded conditions, and when attention was focused on the adapting stimulus and when it was diverted from it, (ii) conventional and phantom MAEs in the crowded condition are weaker than in the non-crowded condition. Analysis conducted to assess the effect of crowding on high-level of motion adaptation suggests that crowding is likely to affect the awareness of the adapting stimulus rather than degrading its sensory representation, (iii) for high-level of motion processing the attentional manipulation does not affect the strength of either conventional or phantom MAEs, neither in the non-crowded nor in the crowded conditions. These results suggest that high-level MAEs do not depend on attention and that at high-level of motion adaptation the effects of crowding are not modulated by attention.  相似文献   

4.
Auditory aftereffects were evaluated after short adaptation to radial sound source motion with different velocities. Approach and withdrawal of the sound source were simulated by means of rhythmical noise (from 20 Hz to 20 kHz) impulse sequences with an arising or diminishing amplitude. They were presented to an anechoic chamber through two loudspeakers placed at 1.1 and 4.5 m from the listener. The adapting stimulus velocities were 0.68, 3.43, 6.92, and 9.97 m/s with an adaptation duration of 5 s. At all motion velocities, the aftereffect manifested itself in divergence of psychometric functions upon approaching and withdrawing of adaptors. The direction of function displacements was opposite to that of the adaptor motion. Three parameters reflecting alteration of perception after motion adaptation were determined and compared with control data: the evaluation of stationary test stimuli; the velocity of moving test signal at the point of subjective equality (perceptually unmoving point); and the percentage of responses after averaging over all test signals. These parameters of auditory radial motion aftereffect similarly changed with the adaptor velocity. They demonstrated a significant effect at slow motion (0.68 and 3.43 m/s) and a small effect at a quick motion (6.92 and 9.97 m/s).  相似文献   

5.
Pattern-onset visual evoked potentials were elicited from humans by sinusoidal gratings of 0.5, 1, 2 and 4 cpd (cycles/degree) following adaptation to a blank field or one of the gratings. The wave forms recorded after blank field adaptation showed an early positive component, P0, which decreased in amplitude with spatial frequency, whereas the immediately succeeding negative component, N1, increased in amplitude with spatial frequency. P0 and N1 components of comparable size were recorded at 1 cpd. Stationary pattern adaptation to a grating of the same spatial frequency as the test grating significantly reduced N1 amplitude at 4, 2 and 1 cpd. The N1 component elicited at 4 cpd was attenuated in log-linear fashion as the spatial frequency of the adaptation grating increased. P0, on the other hand, was unaffected by stationary pattern adaptation at all combinations of test and adapting spatial frequencies, although P0 amplitude is known to be attenuated by adaptation to a drifting grating. Since N1, but not P0, was significantly attenuated following adaptation and testing at 1 cpd, it was concluded that the neurons generating these components are functionally distinct. The use of a common adaptation grating discounted the possibility that N1, but not P0, was affected due to a difference in the rates of retinal image modulation caused by eye movements made while viewing adaptation gratings of different spatial frequencies. The neurons generating N1 were adapted at a lower rate of retinal image modulation than that apparently required for adaptation of the neurons generating P0, which suggests a difference between these neurons in the rate of stimulus modulation necessary for activation.  相似文献   

6.
Contrast adaptation and contrast masking in human vision.   总被引:1,自引:0,他引:1  
After a preliminary study of visual evoked potentials (VEPS) to a test grating seen in the presence of masks at different orientations, psychophysical data are presented showing the effects of adaptation and of masking on thresholds for detecting the same test grating. The test is a vertical grating of spatial frequency 2 cycles per degree; adapting and masking gratings differ from the test either in orientation or in spatial frequency. The effects of adaptation and masking are explained by a single mechanism model that assumes: (i) adaptation and masking both alter the contrast response (or transducer) function of the mechanism that detects the test; (ii) masks, but not adaptors, stimulate the mechanism that detects the test; and (iii) a test is detectable when it raises response level by a constant amount. The model incorporates two distinct tuning functions, a broad adaptive contrast function and a narrow effective contrast function. It accounts adequately for all the data, including the location and size of the facilitative dip found in some masking functions, the constant slopes of the threshold elevation segments of adaptation functions and the varying slopes of masking functions. It also predicts the sometimes surprising joint effects of adaptation followed by masking and of two masks operating simultaneously.  相似文献   

7.
Responses of single neurons were recorded from the ventroposterolateral nucleus (VPL) of the thalamus while a monkey stroked its fingertips over gratings. Monkeys were trained to stroke the gratings with consistent downward applied force and velocity of hand motion. Neurons were selected with receptive fields on the glabrous digits. Average firing rate was computed for a range of grating groove widths; groove width corresponded to roughness. Force and velocity were measured. VPL responses were compared to previously reported responses in primary somatosensory cortex (SI) under identical stimulus conditions, and to reports of peripheral afferent fiber responses to passively applied gratings. VPL responses more closely resembled those of peripheral afferent fibers than those of SI in important respects: lack of independent responses to roughness, force, and velocity; high temporal and force fidelity; and response patterns that closely followed the shape of elevated metal strips used to separate pairs of gratings. The presence in cortex of response patterns not seen in the thalamus, such as response independence and negative correlations to groove width, suggests that they stem from cortical processing.  相似文献   

8.
Responses of single neurons were recorded from the ventroposterolateral nucleus (VPL) of the thalamus while a monkey stroked its fingertips over gratings. Monkeys were trained to stroke the gratings with consistent downward applied force and velocity of hand motion. Neurons were selected with receptive fields on the glabrous digits. Average firing rate was computed for a range of grating groove widths; groove width corresponded to roughness. Force and velocity were measured. VPL responses were compared to previously reported responses in primary somatosensory cortex (SI) under identical stimulus conditions, and to reports of peripheral afferent fiber responses to passively applied gratings. VPL responses more closely resembled those of peripheral afferent fibers than those of SI in important respects: lack of independent responses to roughness, force, and velocity; high temporal and force fidelity; and response patterns that closely followed the shape of elevated metal strips used to separate pairs of gratings. The presence in cortex of response patterns not seen in the thalamus, such as response independence and negative correlations to groove width, suggests that they stem from cortical processing.  相似文献   

9.
Seeing objects in motion   总被引:1,自引:0,他引:1  
This paper reports estimates of the conjoint spatiotemporal tuning functions of the neural mechanisms of the human vision system which detect image motion. The functions were derived from measurements of the minimum contrast necessary to detect the direction of drift of a sinusoidal grating, in the presence of phase-reversed masking gratings of various spatial and temporal frequencies. A mask of similar spatial and temporal frequencies to the test grating reduces sensitivity considerably, whereas one differing greatly in spatial or temporal frequency has little or no effect. The results show that for test gratings drifting at 8 Hz, the tuning function is bandpass in both space and time, peaked at the temporal and spatial frequency (SF) of the test (SFs were 0.1, 1 or 5 c deg-1; c represents cycles throughout). For a grating of 5 c deg-1 drifting at 0.3 Hz, the function is bandpass in space but lowpass in time. Fourier transform of the frequency results yields a function in space-time which we term the 'spatiotemporal receptive field'. For movement detectors (bandpass in space and time) the fields comprise alternating ridges of opposing polarity, elongated in space-time along the preferred velocity axis of the detector. We suggest that this organization explains how detectors analyse form and motion concurrently and accounts, at least in part, for a variety of perceptual phenomena, including summation, reduction of motion smear, metacontrast, stroboscopic motion and spatiotemporal interpolation.  相似文献   

10.
The issue of whether contrast adaptation can reduce the perceived contrast of gratings oriented orthogonal to the adapting stimulus to a greater extent than parallel gratings has been the subject of considerable debate (Snowden and Hammett, 1992; Ross and Speed, 1996). We compared the reductions in perceived contrast of various test gratings oriented parallel and orthogonal to the adapting stimulus across a range of spatial frequencies (2.25-9 c/deg) and adaptation contrasts (0.19-1.0). Our results show that when the adapting stimulus is low in contrast, parallel adaptation effects are always greater than the effects of orthogonal adaptation. When the adapting contrast is increased, however, the difference between parallel and orthogonal effects is reduced. Further increases in adapting contrast can produce a situation where cross-orientation adaptation effects exceed iso-orientation effects. This was observed at low spatial frequencies (2.25 and 4.5 c/deg) only. The difference in the pattern of results obtained at low and high spatial frequencies can be explained in terms of the adapting stimulus visibility. We conclude that cross-orientation adaptation effects can be greater than iso-orientation effects, but only when the adapting stimulus is highly suprathreshold.  相似文献   

11.
The ability of visual attention to tune to the stimulus size (when this size could not be described by spatial frequencies) was studies. Sinusoidal gratings with frequencies of 1.5, 3, and 6 cycle/degree were used as test stimuli. All these stimuli consisted of 3 periods, consequently, they had different sizes: 2 x 2, 1 x 1, and 0.5 x 0.5 degrees. Three reference stimuli had the same sizes but were constructed as a superposition of all the test frequencies. The reference stimulus of suprathreshold contrast was displayed for 400 ms to the left or to the right of a fixation point at a distance of 3 degrees. After that, the test stimulus of threshold contrast was for 100 ms displayed symmetrically to the fixation point on the other side. Subjects were instructed that the sizes of the reference and test stimuli were the same. It was found that the probability of test detection decreased with increase in the difference between the sizes of the reference and test stimuli. Since in our experiments the spatial frequency could not be used for tuning visual attention, the obtained results suggest that there are specialized mechanisms in the visual system for estimation of the general image size.  相似文献   

12.
13.
14.
Alais D  Apthorp D  Karmann A  Cass J 《PloS one》2011,6(12):e28675
Temporal integration in the visual system causes fast-moving objects to leave oriented 'motion streaks' in their wake, which could be used to facilitate motion direction perception. Temporal integration is thought to occur over ≈100 ms in early cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving ('streaky') and slow-moving fields of dots to mask briefly flashed gratings either parallel or orthogonal to the motion trajectory. Gratings were presented at various asynchronies relative to motion onset (from -200 to +700 ms) to sample the time-course of the accumulating streaks. Predictions were that masking would be strongest for the fast parallel condition, and would be weak at early asynchronies and strengthen over time as integration rendered the translating dots more streaky and grating-like. The asynchrony where the masking function reached a plateau would correspond to the temporal integration period. As expected, fast-moving dots caused greater masking of parallel gratings than orthogonal gratings, and slow motion produced only modest masking of either grating orientation. Masking strength in the fast, parallel condition increased with time and reached a plateau after 77 ms, providing an estimate of the temporal integration period for mechanisms encoding motion streaks. Interestingly, the greater masking by fast motion of parallel compared with orthogonal gratings first reached significance at 48 ms before motion onset, indicating an effect of backward masking by motion streaks.  相似文献   

15.
Numerous studies have found that prolonged exposure to grating stimuli reduces sensitivity to subsequently presented gratings, most evidently when the orientations of the adapting and test patterns are similar. The rate of sensitivity loss varies with angular difference indicating both the presence and bandwidths of psychophysical ‘orientation channels’. Here we study the orientation dependency of contrast adaptation measured both monoptically and dichoptically. Earlier psychophysical reports show that orientation bandwidths are broader at lower spatial frequencies, and we confirm this with a simple von Mises model using 0.25 vs. 2 c.p.d. gratings. When a single isotropic (orientation invariant) parameter is added to this model, however, we find no evidence for any difference in bandwidth with spatial frequency. Consistent with cross-orientation masking effects, we find isotropic adaptation to be strongly low spatial frequency-biased. Surprisingly, unlike masking, we find that the effects of interocular adaptation are purely orientation-tuned, with no evidence of isotropic threshold elevation. This dissociation points to isotropic (or ‘cross-orientation’) adaptation being an earlier and more magnocellular-like process than that which supports orientation-tuned adaptation and suggests that isotropic masking and adaptation are likely mediated by separate mechanisms.  相似文献   

16.
Behavioural experiments suggest the existence of two functionally distinct movement-sensitive pathways in honeybees: one mediates optomotor behaviour, consisting of reflexive turning responses preventing deviations from course, and the other controls flight speed. The first consists of direction-selective neurons responding optimally to a particular temporal frequency of motion, regardless of the pattern's spatial structure. The temporal frequency dependence matches the temporal tuning of the optomotor output. Behavioural experiments suggest the second pathway contains velocity-tuned cells, which generate equal-sized responses for any given image velocity, for patterns with a range of spatial structures. Here, recordings were made from direction-selective neurons in the honeybee's ventral nerve cord. Neurons were tested for responses to motion at velocities of 40-1000 deg s(-1) using four gratings with spatial periods of 11-76 degrees. In addition to temporal frequency-dependent optomotor neurons, direction-selective cells were found that had the same shaped velocity-response functions for all four patterns. The velocity-tuning properties of these cells suggest a possible role in monitoring flight speed because their velocity tuning matches the image velocities encountered during free flight and landing behaviour.  相似文献   

17.
Neuronal basis of the motion aftereffect reconsidered   总被引:9,自引:0,他引:9  
Huk AC  Ress D  Heeger DJ 《Neuron》2001,32(1):161-172
Several fMRI studies have reported MT+ response increases correlated with perception of the motion aftereffect (MAE). However, attention can strongly affect MT+ responses, and subjects may naturally attend more to the MAE than control trials without MAE. We found that requiring subjects to attend to motion on both MAE and control trials produced equal levels of MT+ response, suggesting that attention may have confounded the interpretation of previous experiments; in our data, attention accounts for the entire effect. After eliminating this confound, we observed that direction-selective motion adaptation produced a direction-selective imbalance in MT+ responses (and earlier visual areas), and yielded a corresponding asymmetry in speed discrimination thresholds. These findings provide physiological evidence that population level response imbalances underlie the MAE, and quantify the relative proportions of direction-selective neurons across human visual areas.  相似文献   

18.

Background

Mutations that cause learning and memory defects in Drosophila melanogaster have been found to also compromise visual responsiveness and attention. A better understanding of attention-like defects in such Drosophila mutants therefore requires a more detailed characterization of visual responsiveness across a range of visual parameters.

Methodology/Principal Findings

We designed an automated behavioral paradigm for efficiently dissecting visual responsiveness in Drosophila. Populations of flies walk through multiplexed serial choice mazes while being exposed to moving visuals displayed on computer monitors, and infra-red fly counters at the end of each maze automatically score the responsiveness of a strain. To test our new design, we performed a detailed comparison between wild-type flies and a learning and memory mutant, dunce 1. We first confirmed that the learning mutant dunce 1 displays increased responsiveness to a black/green moving grating compared to wild type in this new design. We then extended this result to explore responses to a wide range of psychophysical parameters for moving gratings (e.g., luminosity, contrast, spatial frequency, velocity) as well as to a different stimulus, moving dots. Finally, we combined these visuals (gratings versus dots) in competition to investigate how dunce 1 and wild-type flies respond to more complex and conflicting motion effects.

Conclusions/Significance

We found that dunce 1 responds more strongly than wild type to high contrast and highly structured motion. This effect was found for simple gratings, dots, and combinations of both stimuli presented in competition.  相似文献   

19.
In two experiments, we measured the direction, duration, frequency, and vividness of the tactile motion aftereffect (MAE) induced by a rotating drum with a ridged surface. In Experiment 1, we adapted the: (1) fingers and palm, including the thumb, (2) fingers and palm, excluding the thumb, and (3) fingers only, excluding the thumb. In each condition the drum rotated at 60 rpm for 120 s. There was no difference in duration, frequency, or vividness between the skin surfaces tested. In Experiment 2, we tested several adapting speeds: 15, 30, 45, 60, and 75 rpm. At each speed the fingers and palm, excluding the thumb, were adapted for 120 s. The duration, frequency, and vividness of the tactile MAE increased linearly with adapting speed. Overall, the tactile MAE was reported on approximately half of the trials, suggesting that it is not as robust as its visual counterpart.  相似文献   

20.
A moving grating oriented +/- 45 degrees to the vertical can be perceived at choice as drifting along a left-right or up-down directional axis. When the drifting stimulus is presented alone, direction discrimination thresholds are independent of the specified response-axis. However, they strongly depend on it when the moving stimulus is superimposed on a vertical or horizontal stationary grating. Facilitation is always obtained when the drift direction of the intersections of the two gratings ('blobs') is collinear with the response-axis (i.e. when the orientations of the stationary grating and of the response-axis coincide), while inhibition is observed in the 'noncollinear' cases (i.e. when the orientations of the stationary grating and of the response-axis are orthogonal). These results are generalized in a series of reaction time (RT) experiments where the stimulus configuration described above was set at suprathreshold contrasts and where the orientation/direction of the drifting grating was variable. RT increased when the angle between the response-axis and the direction of the drifting grating increased (uncertainty effect), whether the test stimulus was presented alone, or superimposed on the stationary grating. The uncertainty effect was, however, significantly decreased under 'collinearity' conditions. The attenuation of the uncertainty effect was proportional with the velocity of the blobs and about equal in amount to the RT decrease obtained through the manipulation of the velocity of the drifting grating when presented alone (velocity effect). This observation strongly suggests that both component- and blob/plaid-related information contribute to the directional perception of a compound stimulus and that they sum algebraically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号