首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA segments containing GT/AC dinucleotide repeats in the chimpanzee (Pan troglodytes) genome were screened. Thirteen transformedE. coli colonies were identified with the (GT)10 probe to have chimpanzee DNA fragments containing (GT)n repeats. These potentially polymorphic (variable n) DNA segments were sequenced. Primers for the polymerase chain reaction (PCR) amplifying these DNA segments were designed. Six pairs of primers yielded polymorphic PCR products. Three of them revealed considerable length polymorphisms and heterozygosities in a group of captive chimpanzees. For studies on chimpanzees in the wild and in captivity, these primers should be useful for paternity testing, for investigating genetic variations, and for improving the genetic maintenance of breeding colonies. The strategy adopted in the present study to obtain PCR primers amplifying polymorphic microsatellite DNA segments may well be applicable to almost all eukaryotic organisms.  相似文献   

3.
A highly polymorphic microsatellite in the bovine DRB3 gene was characterized by polymerase chain reaction (PCR) analysis and DNA sequencing. A very strong association between expressed DRB3 polymorphism and microsatellite alleles was revealed by PCR analysis of genomic DNA from 116 animals representing three breeds of cattle. The results indicated a low frequency of microsatellite length mutations as the association was consistent over breeds. The DRB3 microsatellite may be utilized in a PCR-based typing method of bovine class II alleles. The microsatellite polymorphism did not distinguish all known DRB3 alleles, but it was shown that this method may be complemented by the use of allele-specific PCR based on the extensive polymorphism in the DRB3 exon 2. The DNA sequences of seven microsatellite alleles, associated with different class II hap-lotypes, were determined. The DRB3 microsatellite is composed of three repeat motifs, a stretch of at least 10 uninterrupted (TG)n dinucleotides, a long but interrupted stretch of (GA)n dinucleotides, and a few (CAGA)n tetranucleotides. There were pronounced sequence differences beween alleles and the results indicated that the evolution of this microsatellite has involved length mutations of the dinucleotide repeats as well as point mutations causing interruptions in the dinucleotide repeats.  相似文献   

4.
To determine the frequency and clustering of a variety of simple di-and trinucleotide repeats, an Artiodactyl short interspersed element (SINE), an ovine satellite repeat, and a human Alu 1 repeat were used to screen a random selection of cosmids containing inserts of ovine genomic DNA. In total, 197 individual cosmids were digested with EcoRI and the fragments separated on 0.7% agarose gels. Southern blots of these gels were then sequentially probed with (AC)7, (CT)9, and (CAC)6 oligonucleotides, and the repeats described above. The frequency at which (AC)1, (CT)n, and (CAC)n repeats were found in the cosmids indicated that they occurred at average intervals of 65 kb, 367 kb, and 213 kb respectively within the ovine genome. The Artiodactyl SINE was the most common, occurring at an average interval of 20 kb. No human Alu 1 sequences were detected. There was a significant positive association between the (AC)n and the Artiodactyl SINE. This association is quite strong as there was significant clustering of the two repeats both within cosmids and also within the EcoRI fragments of the digested genomic fragments. With the exception of the sheep satellite sequence, which occurs in tandem arrays, none of the other repeats showed significant clustering within the 41-kb (average size) cosmid inserts. The first 25 ovine microsatellites we characterized had an average polymorphic information content (PIC) of 0.65. The different microsatellite types, containing either perfect, imperfect, or compound repeats, had similar average PICs of 0.64, 0.65, and 0.66 respectively. There was a weak regression relationship (R2(adj)%=21.9) between the length of the longest uninterrupted dinucleotide repeat in the largest allele and the PIC of the microsatellite.  相似文献   

5.
Microsatellite markers, also called simple sequence repeats (SSRs), are comprised of a 2-to 6-nucIeotide repeat motif. They are useful as molecular markers for genetic authentication, crop breeding programs, and linkage analysis for map-based cloning. From a microsatellite-enriched genomic library ofAcanthopanax senticosus, we identified 239 new microsatellite-containing sequences. The di-nucleotide repeat units were the most abundant (55.2%), followed by tri-nucleotide repeat units (24.6%). In detailed repeat structures, the (AG)n motif was most frequent (30.5%), followed by the (AC)n motif (21.7%). Heptaand octa-nucleotide repeat motifs were found in each single locus, and a total of 33 (13.8%) complex repeat structures were recorded. This is the first report of mass isolation of microsatellites via screening of anA. senticosus library, and may well provide information useful as a genetic resource for the further study ofA. senticosus.  相似文献   

6.
A partial genomic DNA library of Chlamydomonas reinhardtii was screened with an (AC)11 probe for the presence of (CA/GT)n simple sequence repeats (SSRs). Based on the frequency of these repeats in the partial genomic library, we estimate that (CA/GT)n repeats occur at a rate of about one every 17.7 kb in the C. reinhardtii genome. Ten positive clones were sequenced and four polymerase chain reaction (PCR) primer sets flanking (CA/GT)n sequences were constructed for four loci. The PCR was used to specifically amplify these regions from multiple isolates of C. reinhardtii. All four loci were highly polymorphic in the C. reinhardtii isolates. A simple Mendelian inheritance pattern was found for all four loci, which showed 2:2 segregation in the tetrads resulting from a cross between C. reinhardtii and C. smithii. Our results suggest that these simple sequence repeat DNA loci will be useful for identity testing, population studies, linkage analysis, and genome mapping in Chlamydomonas.  相似文献   

7.
A computer analysis revealed that the mononucleotide repeat (A)n-(T)n is about five times as common as (CA)n-(GT)n repeats in the porcine genome, with frequency estimates of one every 7kb and 30kb, respectively. Seven mononucleotide repeats with n= 12–25 located close to coding sequences were analysed for polymorphism using polymerase chain reaction (PCR) amplification and polyacrylamide gel electrophoresis. All loci were variable with 3–6 alleles and heterozygosities of 0.26–0.69 based on investigation of 10 unrelated pigs (two wild boars and eight domestic sows). Repeat length correlated with degree of polymorphism. A comparison with (CA)n-(GT)n polymorphisms suggested that the number of repeat units rather than the total length of the repeat region is the common denominator that governs polymorphism at both mono- and dinucleotide repeat loci. (A)n-(T)n polymorphisms allowed linkage mapping of relaxin to chromosome 1, apolipoprotein B to chromosome 3, aminopepti-dase N to chromosome 7, arachidonate 12-lipoxygenase to chromosome 12, and follistatin to chromosome 16. The rich abundance of potentially informative (A)n-(T)n repeats will increase the chances of finding a PCR-based marker near any DNA sequence of interest.  相似文献   

8.
Microsatellites are islands of long repeats of mono-, di- or trinucleotides evenly distributed in the eukaryotic genome with an average distance of 50–100 kb. They display a high degree of length polymorphism and heterozygosity at individual loci, making them highly useful as markers in the development of genomic maps of eukaryotes. In the present work, we examined the dinucleotide repeat motif (dG-dT)n in the Atlantic salmon, Salmo salar L., genome. The frequency of (dG-dT)n microsatellites in salmon correlates well with earlier published estimations. Cloning and sequencing of 45 salmon microsatellites revealed perfect and imperfect repeats, but no compound microsatellites. The distribution of number of repeat units in salmon microsatellites differ significantly from that of higher vertebrates. Salmon tends to have more long repeat stretches and less intermediate length repeats.  相似文献   

9.
The Vb6 subfamily is the largest reported subfamily of human T-cell receptor (Tcr) genes with as many as 14 possible members based on variation in reported DNA sequences. A study of the genomic organization of four distinct Vb6 genes indicated that they contained within their introns theuniterrupted dinucleotide repeat (GT)n, with n>8. DNA amplification primers and conditions were determined which amplified the intron of these four different Vb6 gene segments. All four Vb6 genes tested showed length polymorphism when examined in a group of unrelated individuals. Careful sizing and DNA sequencing showed that the alleles of each gene differed in size by multiples of two base pairs (bp), due to different repeat numbers of the dinucleotide (GT)n. These four microsatellite polymorphisms had from three to ten alleles, and individual heterozygosities of 26% to 83%. The large number of alleles and the high heterozygosity make these polymerase chain reaction (PCR)-based polymorphisms very attractive genetic markers for segregation studies which postulate the presence of autoimmune susceptibility genes within the Tcrb region. Vb6 hybridization to genomic DNA confirmed the relatively large size of the Vb6 subfamily in several hominoid species. Nucleotide sequencing of an intron of the Vb6 genes from other primates revealed the presence of dinucleotide repeats similar to those found in human Vb6 genes. Thus, the (GT)n microsatellite was not only present in the Vb6 intron before Vb6 gene duplication, but was present before speciation of the hominoids.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L07638, L07640, and X07641.  相似文献   

10.
One hundred and one new dinucleotide repeat polymorphisms specific for the canine genome have been identified and characterized. Screening of both primary libraries and marker selected libraries enriched for simple sequence repeats led to the isolation of large numbers of genomic clones that contained (CA)n repeats. Over 200 of these clones were sequenced, and PCR primers that bracket the repeat were developed for those that contained ten or more continuous (CA)n units. This effort led to the production of 101 polymorphic markers, which were assigned to one of four categories depending on their degree of polymorphism. Fiftyfour markers were found to be highly or very highly polymorphic as they had four or more alleles when tested on a panel of unrelated dogs. This group of markers will be useful for following inheritance of traits in crosses between dogs.The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession numbers indicated in Table 1.  相似文献   

11.
The researches on yak genetics and breeding were extremely restricted due to lacking of reliable DNA molecular markers. The microsatellites with repeat motif (AC)n/(GT)n in yak genome were enriched by Dynal magnetic beads and the gene libraries containing (AC)n/(GT)n were constructed. Among the 92 identified and sequenced positive clones, 40 contained perfect repeats (43.48 %), 41 contained imperfect repeats (44.57 %) and 11 contained compound repeats (11.96 %). As compared with the percentage of perfect repeats, no significant increases of imperfect repeats were observed in yak genome, which indicated that the level of adaptive evolution of the ability to repair damaged genomic DNA for yaks were high enough to endure the natural pressure of nucleotide substitution resulted from ultraviolet irradiation in high-altitude areas. Totally 19 polymorphic microsatellite loci were screened and genotyped on the basis of electropherograms on an ABI 310 Genetic Analyzer. All the loci exhibited moderate to high-level polymorphisms in a test population of Bos grunniens and the polymorphic information content ranged from 0.299 to 0.861 (mean 0.678). The newly isolated (AC)n/(GT)n repeats from yak genome will display their potential values in examining intra-population genetic structure and inter-population relationships, and also in investigating molecular markers for production and adaptive traits of individual/population.  相似文献   

12.
The fragile X mental retardation syndrome is caused by an expansion of a trinucleotide repeat (CGG)n in the FMR-1 gene. Molecular genetic study of fragile X provides accurate diagnosis and facilitates genetic counseling in families with affected members. We present here the molecular study of 59 Spanish fragile X syndrome families using probe StB 12.3 and the polymerase chain reaction (PCR) of the (CGG)n repeat sequence of the FMR-1 gene. The results obtained have allowed us to characterize 455 individuals, including eight prenatal diagnoses. The clinical diagnosis of fragile X in 89 affected males was confirmed, 137 female carriers were identified (48 of whom were mentally retarded), 176 individuals at risk were found not to have the expansion, and 12 cases of normal transmitting males (NTM) were detected. In the sample studied, no de novo mutations were detected, nor any mutation different from that described for the (CGG)n expansion. One nonmentally retarded male was detected as having an unmethylated CpG island for the FMR-1 gene, but with more than 200 CGG repeats (high functioning male). The analysis of the (CGG)n repeat in 208 normal chromosomes gave an allele distribution similar to that in other Caucasoid population groups, with alleles of 29 and 30 CGG repeats accounting for 46% of the chromosomes. The combination of Southern analysis and PCR of the (CGG)n repeat is highly efficient for diagnosis, compared with cytogenetic techniques, especially in the detection of female carriers, NTMs, and prenatal diagnosis, enabling accurate genetic counseling to be provided in all cases.  相似文献   

13.
The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT)n · (GA)n dinucleotide repeat (n ≈ 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to study the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT)n tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, orangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion.  相似文献   

14.
Summary An (AC)n repeat within the anonymous DNA sequence D21S171 was shown to be highly polymorphic in members of the 40 Centre d'Etude du Polymorphisme Humain (CEPH) families. Ten different alleles at this marker locus were detected by electrophoresis on polyacrylamide gels of DNA amplified by the polymerase chain reaction (PCR) using primers flanking the (AC)n repeat. The observed heterozygosity was 66%. PCR amplification of DNA from somatic cell hybrids mapped D21S171 to human chromosome 21, and linkage analysis localized this marker close to the loci CD18, PFKL, D21S113 and D21S112 in chromosomal band 21q22.3. In CEPH family 12 a de novo allele has been observed in a maternally derived chromosome.  相似文献   

15.
At least nine human genetic diseases, including myotonic dystrophy (DM) and fragile X syndrome have been associated with the expansion of CTG or CGG trinucleotide repeats within the disease loci. Little is known about the molecular mechanisms or the genetic control of the expansion of triplet repeats. Mutations in human mismatch repair genes are associated with the increased polymorphism of many microsatellites, including dinucleotide repeats. The effect of mutations in two mismatch repair genes on the size of trinucleotide repeats in the DM and FRAXA loci has been analyzed. PCR and Southern analysis of the triplet repeat regions of the DM and fragile X mental retardation (FRAXA) loci in cell lines HTC116 and LoVo, which contain mutations in both alleles of the hMLH1 and hMSH2 genes, respectively, indicated that the size of the endogenous (CTG)n and (CGG)n tracts fall within the range observed in the normal population. This suggests that mutations in hMLH1 or hMSH2 do not result in the instability of CTG or CGG tracts to the levels observed in individuals with myotonic dystrophy or fragile X syndrome. Received: 4 December 1995 / Revised: 29 January 1996, 7 March 1996  相似文献   

16.
PCR-amplified microsatellites as markers in plant genetics   总被引:29,自引:0,他引:29  
In order to assess the feasibility of using microsatellites as markers in plant genetics, a survey of published DNA sequence data for presence, abundance and ubiquity in higher plants of all types of dinucleotide and trinucleotide repeats with a minimum number of 10 and 7 units, respectively, was conducted. This search revealed that such microsatellites are frequent and widely distributed; they were uncovered in 34 species, with a frequency of one every 50 kb. AT repeats were by far the most frequently observed class of dinucleotide microsatellites, whereas AC/TG repeats, which are common in animals, were observed only once. TAT repeats prevailed among trinucleotides. Polymerase chain reaction amplification of (AT)n and (TAT)n micro-satellites in soybean (Glycine max (L.) Merr.) revealed that they are highly polymorphic, as a consequence of length variation, somatically stable and inherited in a co-dominant Mendelian manner. The abundance and amount of information derived from such markers, together with the ease by which they can be identified, make them ideal markers for plant genetic linkage and physical mapping, population studies and varietal identification.  相似文献   

17.
The objective of this study was to ascertain the usefulness of polymerase chain reaction (PCR)-based microsatellite analysis for studying pollination and parentage in a wind-pollinated temperate tree. A small insert genomic library of the bur oak (Quercus macrocarpa) was constructed and screened for the presence of (CA/GT) n and (GA/CT) n repeats. The proportion of positive clones yielded estimates of 3×105 such dinucleotide repeats per genome, roughly comparable to abundances reported in other eukaryotic genomes. Thirteen positive clones were sequenced. In contrast to mammalian genomes, the (GA/CT) n motif was more abundant than the (CA/GT) n motif in these clones. The (GA/CT) n repeats also showed longer average repeat length (mean n=16.2 versus 7.3), suggesting that they are better candidates for yielding polymorphic genetic markers in oak genomes. Indeed, a survey of adult bur oaks and offspring in a small stand in northern Illinois at 3 of these (GA/CT) n microsatellite loci revealed Mendelian inheritance and extremely high levels of polymorphism, with the number of alleles at each locus ranging from 11–20 and heterozygosity ranging from 0.66 to 0.75. These results, indicating that (GA/CT) n microsatellites are both abundant and highly polymorphic in the bur oak genome, suggest that such genetic markers have tremendous potential for applications for studies of parentage, pollination and dispersal in temperate trees.  相似文献   

18.
Survey of plant short tandem DNA repeats   总被引:46,自引:0,他引:46  
Length variations in simple sequence tandem repeats are being given increased attention in plant genetics. Some short tandem repeats (STRs) from a few plant species, mainly those at the dinucleotide level, have been demonstrated to show polymorphisms and Mendelian inheritance. In the study reported here a search for all of the possible STRs ranging from mononucleotide up to tetranucleotide repeats was carried out on EMBL and GenBank DNA sequence databases of 3026 kb nuclear DNA and 1268 kb organelle DNA in 54 and 28 plant species (plus algae), respectively. An extreme rareness of STRs (4 STRs in 1268 kb DNA) was detected in organelle compared with nuclear DNA sequences. In nuclear DNA sequences, (AT)n sequences were the most abundant followed by (A)n · (T)n, (AG)n · (CT)n, (AAT)n · (ATT)n, (AAC)n · (GTT), (AGC)n · (GCT)n, (AAG)n · (CTT)n, (AATT)n · (TTAA)n, (AAAT)n · (ATTT)n and (AC)n · (GT)n sequences. A total of 130 STRs were found, including 49 (AT)n sequences in 31 species, giving an average of 1 STR every 23.3 kb and 1 (AT)n STR every 62 kb. An abundance comparable to that for the dinucleotide repeat was observed for the tri- and tetranucleotide repeats together. On average, there was 1 STR every 64.6 kb DNA in monocotyledons versus 1 every 21.2 kb DNA in dicotyledons. The fraction of STRs that contained G-C basepairs increased as the G+C contents went up from dicotyledons, monocotyledons to algae. While STRs of mono-, di- and tetranucleotide repeats were all located in non coding regions, 57% of the trinucleotide STRs containing G-C basepairs resided in coding regions.  相似文献   

19.
M. Band  M. Ron 《Animal genetics》1996,27(4):243-248
Trinucleotide (AGC)n microsatellites are found as 3′ tails of the artiodactyl short interspersed nuclear element (SINE) A-dimer. We describe a polymerase chain reaction (PCR)-based method for the construction of a plasmid library enriched for SINE (AGC)n microsatellites. By amplifying Sau3AI inserts with a conserved SINE primer and a flanking vector primer, a 35-fold enrichment of (AGC)n microsatellites over a conventional genomic library was obtained. The SINE primer was used for both sequencing of AGC-containing inserts and analysis of polymorphism. Twenty-three unique reverse primers were synthesized and used on bovine genomic DNA, 21 producing PCR products of expected size. Five polymorphic (AGC)n microsatellites with 2–4 alleles each were characterized. Allele sizes differed by a 3 bp motif and lacked the stutter bands associated with dinucleotide repeats. A tendency of increased polymorphism for longer AGC repeat arrays was observed. High stringency selection for positive clones containing eight or more AGC repeats can thus facilitate the isolation of polymorphic (AGC)n microsatellites, Enrichment for (AGC), microsatellites by SINE-vector PCR can be applied to other bovidae species, such as sheep or goat, containing the artiodactyl SINE elements.  相似文献   

20.
Short sequence repeats (SSRs) with a potential variable number of tandem repeat (VNTR) loci were identified in the genome of the citrus pathogen Xylella fastidiosa and used for typing studies. Although mono- and dinucleotide repeats were absent, we found several intermediate-length 7-, 8-, and 9-nucleotide repeats, which we examined for allelic polymorphisms using PCR. Five genuine VNTR loci were highly polymorphic within a set of 27 X. fastidiosa strains from different hosts. The highest average Nei's measure of genetic diversity (H) estimated for VNTR loci was 0.51, compared to 0.17 derived from randomly amplified polymorphic DNA (RAPD) analysis. For citrus X. fastidiosa strains, some specific VNTR loci had a H value of 0.83, while the maximum value given by specific RAPD loci was 0.12. Our approach using VNTR markers provides a high-resolution tool for epidemiological, genetic, and ecological analysis of citrus-specific X. fastidiosa strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号