首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acid RNase activity of mouse liver cytosol has been resolved into two different enzymes named acid RNase I and acid RNase II respectively. Acid RNase I is a typical pancreatic-type enzyme hydrolyzing CpN and UpN bonds. Acid RNase II, however, hydrolyzes GpN bonds in non-hydrogen-bonded regions of the substrate.  相似文献   

2.
A previously unreported endoribonuclease has been identified in Escherichia coli, which has a preference for hydrolysis of pyrimidine-adenosine (Pyd-Ado) bonds in RNA. It was purified about 7000-fold to give a single band after SDS/polyacrylamide gel electrophoresis; the eluted protein gave the same RNase specificity. The sizes of the native and denatured enzymes agreed suggesting that the enzyme exists as a monomer of approximately 26 kDa. It is called RNase M. The only other reported broadly specific endoribonuclease in E. coli is RNase I, a periplasmic enzyme. Based on differences in charge, heat stability and substrate specificity, it was clear that RNase M is not RNase I. The specificity of RNase M was remarkably similar to that of pancreatic RNase A even though the two enzymes differ in charge characteristics and size. Earlier studies had shown that mRNA from the lactose operon of E. coli is hydrolyzed in vivo primarily between Pyd-Ado bonds [Cannistraro et al. (1986) J. Mol. Biol. 192, 257-274] We propose that this major RNase activity accounts for these cleavages observed in vivo and that it is the endonuclease for mRNA degradation in E. coli.  相似文献   

3.
Human RNase H1 contains an N-terminal domain known as dsRHbd for binding both dsRNA and RNA/DNA hybrid. We find that dsRHbd binds preferentially to RNA/DNA hybrids by over 25-fold and rename it as hybrid binding domain (HBD). The crystal structure of HBD complexed with a 12 bp RNA/DNA hybrid reveals that the RNA strand is recognized by a protein loop, which forms hydrogen bonds with the 2'-OH groups. The DNA interface is highly specific and contains polar residues that interact with the phosphate groups and an aromatic patch that appears selective for binding deoxyriboses. HBD is unique relative to non-sequence-specific dsDNA- and dsRNA-binding domains because it does not use positive dipoles of alpha-helices for nucleic acid binding. Characterization of full-length enzymes with defective HBDs indicates that this domain dramatically enhances both the specific activity and processivity of RNase H1. Similar activity enhancement by small substrate-binding domains linked to the catalytic domain likely occurs in other nucleic acid enzymes.  相似文献   

4.
Three ribonucleases, RNase I, RNase II and RNase III, were purified from the 109,000 X g supernate of detergent-treated Tetrahymena pyriformis strain W. RNases I and II act optimally at pH 5.5-6.0 and are inhibited by increasing concentrations of salts of monovalent cations. RNase III acts optimally at pH 7.5 and is activated 1.5-fold by millimolar concentrations of ZnSO4 and 5-fold by 50 mM KCl. RNases II and III are activated approximately 100% in the presence of 3 M and 5 M urea respectively. All enzymes are heat-sensitive and acid-resistant. They are endonucleases forming 2',3'-cyclic products. Their base specificity, as tested against ribosomal RNAs of known sequence, is as follows: RNase I hydrolyzes preferentially YpN and secondarily GpN bonds, RNase II is highly specific for RpN bonds, though the preparation can also hydrolyze the UpU sequence. Finally the principal targets of RNase III are YpR sequences and secondarily YpY sequences. A shorthand visualization of base specificity of nucleases in the form of right isosceles triangles is presented. The triangles are constructed by subdividing each of the two perpendicular sides in as many units as the maximum number of times the most abundant dinucleotide appears in all substrates employed and plotting the frequency of hydrolysis of each dinucleotide sequence by the enzyme under study. The proximity of each dinucleotide sequence to the hypotenuse or to one of the perpendicular sides is indicative of its susceptibility or resistance to the enzyme's action.  相似文献   

5.
Reversible conversion between the native and scrambled proteins can be applied to analyze the denaturation curve of a disulfide-containing protein. In the case of RNase A, scrambled species could not be well separated from the native species by HPLC to permit precise quantitative analysis of the extent of denaturation. Methods are developed here to overcome this problem. The methods exploit the difference of conformational stability between the native and scrambled RNase A. When a sample of partially denatured RNase A was placed under mild reducing conditions (0.2-1 mM dithiothreitol for 10 min), the disulfide bonds of the native RNase A remain intact, whereas those of scrambled isomers become fully reduced. The native and fully reduced species of RNase A can be completely separated by HPLC. Alternatively, a mixture of partially denatured RNase A can be treated with mild concentration of proteolytic enzymes (trypsin or thermolysin). In this approach, scrambled isomers of RNase A were totally fragmented and readily separated from the native RNase A. These methods allow analysis and construction of the denaturation curves of RNase A in the presence of urea, GdmCl and GdmSCN.  相似文献   

6.
The present study was performed to design an immunotoxin consisting of engineered RNase A and scFv of Cetuximab. To accomplish this study goal, at first to evade RNase A from its inhibitors in the cytoplasm, six amino acids of RNase A were substituted, then the physicochemical features of engineered RNase A were assessed. To investigate the interaction between the engineered RNase A and the ribonuclease inhibitor, protein–protein docking was performed. After engineering the RNase A, it was theoretically conjugated with scFv of Cetuximab using a cleavable linker to produce scFv-engineered RNase A. Then, wild-RNase A (14 kD), engineered RNase A (14 kD) and scFv-engineered RNase A (42 kDa) were expressed in the BL21 (DE3) strain of Escherichia coli and purified by Ni-NTA columns. To confirm the expressed proteins, western blot analysis was performed. The functioning of wild-RNase A and engineered RNase A were investigated by RNA fragmentation assay. Finally, to evaluate the cytotoxicity of scFv-engineered RNase A, a dose–response cytotoxicity assay was performed on Her1-positive and Her1-negative cell lines. The results showed that engineered RNase A could maintain its structure and disulfide bonds and evade its inhibitor. Expression and purification were successfully conducted and both enzymes could degrade yeast RNA. The result of cytotoxicity showed that the engineered immunotoxin could induce cell death to Her1-positive cell lines with an IC50 of 50 nM. It appears that scFv-engineered RNase A can be a promising molecule for use.  相似文献   

7.
The C-terminal amino acid residues of bovine pancreatic ribonuclease A (RNase A) form a core structure in the initial stage of the folding process that leads to the formation of the tertiary structure. In this paper, roles of the C-terminal four amino acids in the structure, function, and refolding were studied by use of recombinant mutant enzymes in which these residues were deleted or replaced. Purified mutant enzymes were analyzed for their secondary structure, thermal stability, and ability to regenerate from the denatured and reduced state. The C-terminal deleted mutant enzymes showed lower hydrolytic activity for C>p and nearly identical CD spectra compared with the wild-type enzyme. The rate of recovery of activity was significantly different among the C-terminal deleted mutant enzymes when air oxidation was employed in the absence of GSH and GSSG: the rates decreased in the order of des-124-, des-(123-124)-, and des-(122-124)-RNase A. It is noteworthy that the regeneration rates of mutant RNase A in the presence of GSH and GSSG were nearly the same. Des-(121-124)-RNase A failed to recover activity both in the presence and absence of glutathione, due to the mismatched formation of disulfide bonds. The mutant enzyme in which all of the C-terminal four amino acid residues were replaced by alanine residues showed lower hydrolytic activity and an indistinguishable CD spectrum compared with the wild-type enzyme, and also recovered its activity from the denatured and reduced state by air oxidation. The D121 mutant enzymes showed decreased hydrolytic activity and identical CD spectra compared with the wild type. The recovery rates of activity of D121A and D121K were determined to be lower than that of the wild-type enzyme, while the rate of recovery of D121E was comparable to that of the wild type. The C-terminal amino acids play a significant role in the formation of the correct disulfide bonds during the refolding process, and the interaction of amino acid residues and the existence of the main chain around the C-terminal region are both important for achieving the efficient packing of the RNase A molecule.  相似文献   

8.
Ribonuclease LE (RNase LE) from cultured tomato (Lycopersicon esculentum) cells is a member of the RNase T(2) family showing broad base specificity. The crystal structure of RNase LE has been determined at 1.65 A resolution. The structure consists of seven alpha-helices and seven beta-strands, belonging to an alpha+beta type structure. Comparison of the structure of RNase LE with that of RNase Rh, a microbial RNase belonging to the RNase T(2) family, reveals that while the overall folding topologies are similar to each other, major insertions and deletions are found at the N-terminal regions. The structural comparison, an amino acid sequence alignment of the RNase T(2) enzymes, and comparison of the disulfide-bonding pattern of these enzymes show that the structure of RNase LE shown here is the basic framework of the animal/plant subfamily of RNase T(2) enzymes (including a self-incompatibility protein called S-RNase), and the structure of RNase Rh is that of the fungal subfamily of RNase T(2) enzymes (including RNase T(2)). Subsequently, we superposed the active-site of the RNase LE with that of RNase Rh and found that (1) His39, Trp42, His92, Glu93, Lys96, and His97 of RNase LE coincided exactly with His46, Trp49, His104, Glu105, Lys108, and His109, respectively, of RNase Rh, and (2) two conserved water molecules were found at the putative P(1) sites of both enzymes. These facts suggest that plant RNase LE has a very similar hydrolysis mechanism to that of fungal RNase Rh, and almost all the RNase T(2) enzymes widely distributed in various species share a common catalytic mechanism. A cluster of hydrophobic residues was found on the active-site face of the RNase LE molecule and two large hydrophobic pockets exist. These hydrophobic pockets appear to be base binding sites mainly by hydrophobic interactions and are responsible for the base non-specificity of RNase LE.  相似文献   

9.
Ribonuclease MC1 (RNase MC1), isolated from bitter gourd seeds, is a uridine specific RNase belonging to the RNase T2 family. Mutations of Asn71 in RNase MC1 to the amino acids Thr (N71T) and Ser (N71S) in guanosine preferential RNases altered the substrate specificity from uridine specific to guanosine specific, as shown by the transphosphorylation of diribonucleoside monophosphates [Numata, T., et al. (2001) Biochemistry 40, 524-530]. To elucidate the structural basis for the alteration of substrate specificity, crystal structures of the RNase MC1 mutants N71T and N71S, free or complexed with 5'-GMP, were determined at resolutions higher than 2 A. In the N71T-5'-GMP and N71S-5'-GMP complexes, the guanine moiety was, as in the case of the uracil moiety bound to wild-type RNase MC1, firmly stabilized in the B2 site by an extensive network of hydrogen bonds and hydrophobic interactions. Structure comparisons showed that mutations of Asn71 to Thr or Ser cause an enlargement of the B2 site, which then make it feasible to insert a guanine base into the B2 site of mutants N71T and N71S. This binding further allows for hydrogen bonding interaction of the side chain hydroxyl groups of Thr71 or Ser71 with the N7 atom of the guanine base. The mode of guanine binding of mutants N71T and N71S was found to be essentially identical to that of a guanosine preferential RNase NW from Nicotiana glutinosa. In particular, hydrogen bonds between the N7 atom of the guanine base and the hydroxyl groups of the amino acids at position 71 (RNase MC1 numbering) were completely conserved in three guanosine preferential enzymes, thereby indicating that the hydrogen bond may play an essential role in guanine binding in guanosine preferential RNases in the RNase T2 family. Consequently, it can be concluded that amino acids at position 71 (RNase MC1 numbering) serve as one of the determinants for substrate specificity (or preference) in the RNase T2 fimily by changing the size and shape of the B2 site.  相似文献   

10.
Recognition of modified forms of ribonuclease A by the ubiquitin system   总被引:1,自引:0,他引:1  
The substrate specificity of the ubiquitin (Ub) conjugation system was explored with regard to recognition of unfolded conformation and/or oxidized methionine residues in six derivatives of bovine RNase A. Based on the following observations, ubiquitination of RNase A substrates by the enzymes in a rabbit reticulocyte extract appears to correlate with unfolded conformation rather than with methionine oxidation. 1) Methionine oxidation in already unfolded forms of RNase A does not enhance ubiquitination. 2) Fluorescence measurements and iodoacetate trapping of free sulfhydryls show that the disulfide bonds of MetSO-RNase A, in which the 4 methionine residues are oxidized to the sulfoxide, are reduced by 2 mM dithiothreitol (DTT) in standard Ub conjugation assays so that this derivative also is unfolded. 3) Although MetSO-RNase A is ubiquitinated in the absence of DTT, its intrinsic fluorescence, cation-exchange properties, and susceptibility to reduction indicate a non-native conformation. 4) Methionine sulfoxide-containing peptides that mimic regions of RNase A fail to inhibit conjugation of 125I-Ub to MetSO-RNase A. Ub adducts to two of the six derivatives (MetSO- and reduced/carboxamidomethylated MetSO-RNase A) increase when DTT is omitted from the reactions. Ubaldehyde, an inhibitor of isopeptidases that disassemble Ub-protein conjugates, increased product yields and reduced or abolished the DTT effect, suggesting that an isopeptidase specific for these two RNase A derivatives may be inactivated by oxidation. Ub conjugates of the other RNase A derivatives also increase with Ub-aldehyde but are unaffected by DTT.  相似文献   

11.
Protein disulfide isomerase (PDI) and its pancreatic homolog (PDIp) are folding catalysts for the formation, reduction, and/or isomerization of disulfide bonds in substrate proteins. However, the question as to whether PDI and PDIp can directly attack the native disulfide bonds in substrate proteins is still not answered, which is the subject of the present study. We found that RNase can be thermally unfolded at 65°C under non-reductive conditions while its native disulfide bonds remain intact, and the unfolded RNase can refold and reactivate during cooling. Co-incubation of RNase with PDI or PDIp during thermal unfolding can inactivate RNase in a PDI/PDIp concentration-dependent manner. The alkylated PDI and PDIp, which are devoid of enzymatic activities, cannot inactivate RNase, suggesting that the inactivation of RNase results from the disruption of its native disulfide bonds catalyzed by the enzymatic activities of PDI/PDIp. In support of this suggestion, we show that both PDI and PDIp form stable disulfide-linked complexes only with thermally-unfolded RNase, and RNase in the complexes can be released and reactivated dependently of the redox conditions used. The N-terminal active site of PDIp is essential for the inactivation of RNase. These data indicate that PDI and PDIp can perform thiol-disulfide exchange reactions with native disulfide bonds in unfolded RNase via formation of stable disulfide-linked complexes, and from these complexes RNase is further released.  相似文献   

12.
13.
Eukaryotic ribonuclease (RNase) P and RNase MRP are evolutionary related RNA-based enzymes involved in metabolism of various RNA molecules, including tRNA and rRNA. In contrast to the closely related eubacterial RNase P, which is comprised of an RNA component and a single small protein, these enzymes contain multiple protein components. Here we report the results of footprinting studies performed on purified Saccharomyces cerevisiae RNase MRP and RNase P holoenzymes. The results identify regions of the RNA components affected by the protein moiety, suggest a role of the proteins in stabilization of the RNA fold, and point to substantial similarities between the two evolutionary related RNA-based enzymes.  相似文献   

14.
N Vasantha  D Filpula 《Gene》1989,76(1):53-60
Two different hybrid genes were constructed which fuse the Bacillus amyloliquefaciens alkaline protease gene (apr[BamP]) promoter and signal peptide coding region to a synthetic bpr gene coding for the mature bovine pancreatic RNase A. The first gene fusion (apr-bpr1) contained the apr[BamP] signal peptide coding region fused to mature bpr through a linker coded 3-amino acid region and retained the signal processing site ala-ala of the alkaline protease. The second fusion (apr-bpr2) joined the end of the apr[BamP] signal peptide coding sequence to the mature bpr resulting in a hybrid signal processing site ala-lys. B. subtilis strains harboring these gene fusions secreted bovine pancreatic RNase A into the growth medium. Cleavage at the hybrid signal processing site ala-lys resulted in the secretion of bovine pancreatic RNase A from B. subtilis which had an N-terminal amino acid sequence that was identical to the native RNase A. Bovine pancreatic RNase A contains four disulfide bonds and the proper formation of these bonds is required for activity. RNase activity could be detected in the culture supernatants of strains carrying the apr-bpr gene fusions, which suggests that the proper disulfide bonds have formed spontaneously.  相似文献   

15.
Jain C 《Journal of bacteriology》2012,194(15):3883-3890
Escherichia coli contains multiple 3' to 5' RNases, of which two, RNase PH and polynucleotide phosphorylase (PNPase), use inorganic phosphate as a nucleophile to catalyze RNA cleavage. It is known that an absence of these two enzymes causes growth defects, but the basis for these defects has remained undefined. To further an understanding of the function of these enzymes, the degradation pattern of different cellular RNAs was analyzed. It was observed that an absence of both enzymes results in the appearance of novel mRNA degradation fragments. Such fragments were also observed in strains containing mutations in RNase R and PNPase, enzymes whose collective absence is known to cause an accumulation of structured RNA fragments. Additional experiments indicated that the growth defects of strains containing RNase R and PNPase mutations were exacerbated upon RNase PH removal. Taken together, these observations suggested that RNase PH could play a role in structured RNA degradation. Biochemical experiments with RNase PH demonstrated that this enzyme digests through RNA duplexes of moderate stability. In addition, mapping and sequence analysis of an mRNA degradation fragment that accumulates in the absence of the phosphorolytic enzymes revealed the presence of an extended stem-loop motif at the 3' end. Overall, these results indicate that RNase PH plays a novel role in the degradation of structured RNAs and provides a potential explanation for the growth defects caused by an absence of the phosphorolytic RNases.  相似文献   

16.
Cells overexpressing the RNA-processing enzymes RNase III, RNase E and RNase P were fractionated into membrane and cytoplasm. The RNA-processing enzymes were associated with the membrane fraction. The membrane was further separated to inner and outer membrane and the three RNA-processing enzymes were found in the inner membrane fraction. By assaying for these enzymatic activities we showed that even in a normal wild-type strain of Escherichia coli these enzymes fractionate primarily with the membrane. The RNA part of RNase P is found in the cytosolic fraction of cells overexpressing this RNA, while the overexpressed RNase P protein sediments with the membrane fraction; this suggests that the RNase P protein anchors the RNA catalytic moiety of the enzyme to a larger entity. The implications of these findings for the cellular organization of the RNA-processing enzymes in the cell are discussed.  相似文献   

17.
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.  相似文献   

18.
The cleavage mechanism has been studied for nuclear RNase P from Saccharomyces cerevisiae, Homo sapiens sapiens and Dictyostelium discoideum, representing distantly related branches of the Eukarya. This was accomplished by using precursor tRNAs (ptRNAs) carrying a single Rp or Sp-phosphorothioate modification at the normal RNase P cleavage site (position -1/+1). All three eukaryotic RNase P enzymes cleaved the Sp-diastereomeric ptRNA exclusively one nucleotide upstream (position -2/-1) of the modified canonical cleavage site. Rp-diastereomeric ptRNA was cleaved with low efficiency at the modified -1/+1 site by human RNase P, at both the -2/-1 and -1/+1 site by yeast RNase P, and exclusively at the -2/-1 site by D. discoideum RNase P. The presence of Mn(2+ )and particularly Cd(2+) inhibited the activity of all three enzymes. Nevertheless, a Mn(2+ )rescue of cleavage at the modified -1/+1 site was observed with yeast RNase P and the Rp-diastereomeric ptRNA, consistent with direct metal ion coordination to the (pro)-Rp substituent during catalysis as observed for bacterial RNase P enzymes. In summary, our results have revealed common active-site constraints for eukaryotic and bacterial RNase P enzymes. In all cases, an Rp as well as an Sp-phosphorothioate modification at the RNase P cleavage site strongly interfered with the catalytic process, whereas substantial functional interference is essentially restricted to one of the two diastereomers in other RNA and protein-catalyzed hydrolysis reactions, such as those catalyzed by the Tetrahymena ribozyme and nuclease P1.  相似文献   

19.
RNase II and RNase R are the two E. coli exoribonucleases that belong to the RNase II super family of enzymes. They degrade RNA hydrolytically in the 3' to 5' direction in a processive and sequence independent manner. However, while RNase R is capable of degrading structured RNAs, the RNase II activity is impaired by dsRNAs. The final end-product of these two enzymes is also different, being 4 nt for RNase II and 2 nt for RNase R. RNase II and RNase R share structural properties, including 60% of amino acid sequence similarity and have a similar modular domain organization: two N-terminal cold shock domains (CSD1 and CSD2), one central RNB catalytic domain, and one C-terminal S1 domain. We have constructed hybrid proteins by swapping the domains between RNase II and RNase R to determine which are the responsible for the differences observed between RNase R and RNase II. The results obtained show that the S1 and RNB domains from RNase R in an RNase II context allow the degradation of double-stranded substrates and the appearance of the 2 nt long end-product. Moreover, the degradation of structured RNAs becomes tail-independent when the RNB domain from RNase R is no longer associated with the RNA binding domains (CSD and S1) of the genuine protein. Finally, we show that the RNase R C-terminal Lysine-rich region is involved in the degradation of double-stranded substrates in an RNase II context, probably by unwinding the substrate before it enters into the catalytic cavity.  相似文献   

20.
Running rings around RNA: a superfamily of phosphate-dependent RNases.   总被引:18,自引:0,他引:18  
The exosome of Saccharomyces cerevisiae and the degradosome of Escherichia coli are multienzyme complexes involved in the degradation of mRNA. Both contain enzymes that are similar to the phosphate-dependent exoribonuclease RNase PH. These enzymes are phosphorylases that degrade RNA from the 3'-end. A recent X-ray crystallographic study of the polynucleotide phosphorylase (PNPase) from Streptomyces antibioticus reveals, for the first time, the atomic structure of a member of the RNase PH superfamily. Here, information from the structure of PNPase is used to address two related issues. First, the structure supports the idea that PNPase, which is a trimer of multidomain subunits, arose by duplication of a gene encoding an RNase PH-like enzyme. Second, the structure might explain how RNase PH-like enzymes associate into oligomeric rings that degrade RNA in a processive reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号