首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.  相似文献   

2.
Gliotoxin is a secondary metabolite produced by several fungi including the opportunistic human pathogen Aspergillus fumigatus. As gliotoxin exerts immunosuppressive effects in vitro and in vivo, a role as a virulence determinant in invasive aspergillosis has been discussed for a long time but evidence has not been provided until now. Here, by the use of different selection marker genes A. fumigatus knock-out strains were generated that are deficient for the non-ribosomal peptide synthetase GliP, the putative key enzyme of the gliotoxin biosynthesis. Deletion of the gliP gene resulted in loss of gliotoxin production, as analysed by high performance liquid chromatography and tandem mass spectrometry. No differences in morphology or growth kinetics between wild-type and gliP-deletion strains were observed. In vitro, the culture supernatant of the gliP-deficient strains showed a reduced cytotoxic effect on both macrophage-like cells and T cell lines. In a low-dose murine infection model of invasive aspergillosis, gliotoxin was detected in the lung and absent when mice were infected with the gliP deletion strain. However, gliP deletion strains showed no difference in virulence compared with the corresponding wild-type strains. Taken together, the non-ribosomal peptide synthetase GliP is essential for gliotoxin production in A. fumigatus. Gliotoxin is not required for pathogenicity of the fungus in immunocompromised mice, despite the fact that a reduced cytotoxicity of the culture supernatant of gliP deletion strains was demonstrated.  相似文献   

3.
Gliotoxin is a fungal second metabolite produced by diverse species that can be found in compost, stored crops, moist animal feed and sawdust. The role of glutathione in gliotoxin-induced toxicity was studied in order to elucidate the toxic mechanisms leading to neurite degeneration and cell death in differentiated human neuroblastoma (SH-SY5Y) cells. After 72 h of exposure to gliotoxin, moderate cytotoxicity was induced at 0.1 μmol/L, which was more severe at higher concentrations. A reduction in the number of neurites per cell was also observed. By decreasing the level of intracellular glutathione with l-buthionine-sulfoxamine (BSO) a specific inhibitor of glutathione synthesis, the cytotoxic effect of gliotoxin was significantly attenuated. The gliotoxin-induced cytotoxicity was also slightly reduced by the antioxidant vitamin C. However, the neurite degenerative effect was not altered by BSO, or by vitamin C. A concentration-dependent increase in the ratio between oxidized and reduced forms of glutathione, as well as the total intracellular glutathione levels, was noted after exposure to gliotoxin. The increase of glutathione was also reflected in western blot analyses showing a tendency for the regulatory subunit of γ-glutamylcysteine synthetase to be upregulated. In addition, the activity of glutathione reductase was slightly increased in gliotoxin-exposed cells. These results indicate that glutathione promotes gliotoxin-induced cytotoxicity, probably by reducing the ETP (epipolythiodioxopiperazine) disulfide bridge to the dithiol form.  相似文献   

4.
Gliotoxin is an immunosuppressive mycotoxin long suspected to be a potential virulence factor of Aspergillus fumigatus. Recent studies using mutants lacking gliotoxin production, however, suggested that the mycotoxin is not important for pathogenesis of A. fumigatus in neutropenic mice resulting from treatment with cyclophosphomide and hydrocortisone. In this study, we report on the pathobiological role of gliotoxin in two different mouse strains, 129/Sv and BALB/c, that were immunosuppressed by hydrocortisone alone to avoid neutropenia. These strains of mice were infected using the isogenic set of a wild type strain (B-5233) and its mutant strain (gliPDelta) and the the glip reconstituted strain (gliP(R)). The gliP gene encodes a nonribosomal peptide synthase that catalyzes the first step in gliotoxin biosynthesis. The gliPDelta strain was significantly less virulent than strain B-5233 or gliP(R) in both mouse models. In vitro assays with culture filtrates (CFs) of B-5233, gliPDelta, and gliP(R) strains showed the following: (i) deletion of gliP abrogated gliotoxin production, as determined by high-performance liquid chromatography analysis; (ii) unlike the CFs from strains B-5233 and gliP(R), gliPDelta CFs failed to induce proapoptotic processes in EL4 thymoma cells, as tested by Bak conformational change, mitochondrial-membrane potential disruption, superoxide production, caspase 3 activation, and phosphatidylserine translocation. Furthermore, superoxide production in human neutrophils was strongly inhibited by CFs from strain B-5233 and the gliP(R) strain, but not the gliPDelta strain. Our study confirms that gliotoxin is an important virulence determinant of A. fumigatus and that the type of immunosuppression regimen used is important to reveal the pathogenic potential of gliotoxin.  相似文献   

5.
Gliotoxin is a secondary metabolite produced by several fungi including the opportunistic animal pathogen Aspergillus fumigatus. It is a member of the epipolythiodioxopiperazine (ETP) class of toxins characterised by a disulphide bridged cyclic dipeptide. A putative cluster of 12 genes involved in gliotoxin biosynthesis has been identified in A. fumigatus by a comparative genomics approach based on homology to genes from the sirodesmin (another ETP) biosynthetic gene cluster of Leptosphaeria maculans. The physical limits of the cluster in A. fumigatus have been defined by bioinformatics and by identifying the genes that are co-regulated and whose timing of expression correlates with the production of gliotoxin in culture.  相似文献   

6.
The genotoxic effects of gliotoxin, a known fungal secondary metabolite, were studied. Gliotoxin was purified from cultivation medium of Aspergillus fumigatus isolated from the indoor air of a moisture problem house. The genotoxicity of gliotoxin was assessed both in bacterial test systems including bacterial repair assay, Ames Salmonella assay and SOS-chromotest, and in mammalian cells using single cell gel (SCG) electrophoresis assay and sister-chromatid exchange (SCE) test. Gliotoxin was found to be genotoxic in the bacterial repair assay but, not in the Salmonella test or SOS-chromotest. A dose-related increase in DNA damage was observed in mouse RAW264.7 macrophages exposed to gliotoxin for 2h in plain medium in the SCG assay. In contrast to the positive response in the SCG assay, gliotoxin did not induce any clear, dose-related increase in SCEs in Chinese hamster ovary (CHO) cells.  相似文献   

7.
The compartmentalization of cAMP in human neutrophils during phagocytosis of serum-opsonized zymosan suggests that cAMP is an important second messenger for regulating phagocytosis. Type 4 cAMP-specific phosphodiesterase (PDE-4), cAMP-dependent protein kinase (PKA), and adenylate cyclase are the principal effector molecules for cAMP regulation in phagocytes. Immunofluorescence microscopy demonstrated that PDE-4 isoforms (HSPDE-4A, HSPDE-4B, HSPDE-4D) were targeted to the forming phagosome in neutrophils, and were colocalized with the catalytic subunit of PKA and degranulated myeloperoxidase. Phagocytosis and accumulation of PDE-4 and PKA near adherent zymosan were inhibited by elevating cAMP levels with forskolin or rolipram. cAMP, PDE-4, and PKA were localized at sites of zymosan adherence in cells treated with cytochalasin D to inhibit phagosome formation, suggesting that zymosan engagement to Fc/CR3 receptors triggers cAMP elevations at sites of phagocytosis. HSPDE-4A, HSPDE-4B, HSPDE-4D, and PKA also were localized at the forming phagosome in monocyte-derived macrophages, and the lysosomal marker CD63 demonstrated the absence of PDE-4 around internalized phagolysosomes. These results suggest that cAMP levels are focally regulated by PDE-4 at the nascent phagosome, and that PKA may phosphorylate proteins associated with pseudopodia formation and phagosome internalization.  相似文献   

8.
Gliotoxin, one of the mycotoxins produced by Aspergillus fumigatus, has various, potent bioactivities. However, it has not been considered to be a toxic (or virulence) factor because of its slow production. The aim of the present study was to investigate the effects of aeration on the cytotoxicity of A. fumigatus culture filtrate, and to determine the optimal condition for the rapid production of gliotoxin from this fungus. Fungal culture filtrates were made in three different containers under various conditions of aeration and O2 concentration. These filtrates were compared in terms of their cytotoxicity on murine macrophages and analyzed by gas chromatography. The culture filtrate showed high cytotoxicity when it was made under highly aerated conditions, but it was significantly less cytotoxic when prepared under non-aerated conditions. The cytotoxic activity became evident within 15 h of culture at 20% O2, when the fungus had already started producing gliotoxin. The culture filtrates also contained some other as yet unidentified substances that might also to some extent contribute to the cytotoxicity. In light of these results, the authors propose that a highly aerated condition is responsible for the rapid production of gliotoxin, and that gliotoxin might play an important role in the respiratory infection by A. fumigatus, with other toxic substances acting additively or synergistically.  相似文献   

9.
Gliotoxin, one of the mycotoxins produced by Aspergillus fumigatus, has various, potent bioactivities. However, it has not been considered to be a toxic (or virulence) factor because of its slow production. The aim of the present study was to investigate the effects of aeration on the cytotoxicity of A. fumigatus culture filtrate, and to determine the optimal condition for the rapid production of gliotoxin from this fungus. Fungal culture filtrates were made in three different containers under various conditions of aeration and O2 concentration. These filtrates were compared in terms of their cytotoxicity on murine macrophages and analyzed by gas chromatography. The culture filtrate showed high cytotoxicity when it was made under highly aerated conditions, but it was significantly less cytotoxic when prepared under non-aerated conditions. The cytotoxic activity became evident within 15 h of culture at 20% O2, when the fungus had already started producing gliotoxin. The culture filtrates also contained some other as yet unidentified substances that might also to some extent contribute to the cytotoxicity. In light of these results, the authors propose that a highly aerated condition is responsible for the rapid production of gliotoxin, and that gliotoxin might play an important role in the respiratory infection by A. fumigatus, with other toxic substances acting additively or synergistically.  相似文献   

10.
Gliotoxin from Aspergillus, bearing a S&bond;S bond in its structure, prevented the onset of O(-)(2) generation by the human neutrophil NADPH oxidase in response to phorbol myristate acetate (PMA). Gliotoxin affected the activation process harder than the activated oxidase, as shown by its stronger inhibition when added to neutrophils prior to, than post-PMA at maximum enzyme turnover. Decreased O(-)(2) generation persisted even if cells treated with gliotoxin were subsequently washed, with half-inhibition concentrations (IC(50)) of 5.3, and 3.5 microM for treatments of 15 and 30 min, respectively. In addition, gliotoxin made neutrophils reduce cytochrome c regardless of absence of PMA, through its reaction with intracellular reductants in an oxygen-dependent process, named redox cycling. Thus, we next tested whether preincubation of neutrophils with gliotoxin under hypoxic conditions would relieve the inhibition of NADPH oxidase. Instead, this prevention of redox cycling significantly favored damage to the NADPH oxidase with an IC(50) of 0.009 microM. Moreover, conversion of gliotoxin to its dithiol derivative by addition of reduced dithiothreitol during incubation protected cells from losing oxidase activity. These findings support that the disulfide form of gliotoxin targets NADPH oxidase activation.  相似文献   

11.
Gliotoxin is an immunosuppressive cytotoxin produced by numerous environmental or pathogenic fungal species. For this reason, it is one of the mycotoxins which must be systematically searched for in samples for biological control. In this study, a new, rapid and sensitive method for detecting gliotoxin has been developed. This bioassay is based on the induction of morphological changes in cultured cells (human KB cell line) by gliotoxin. Interpretation of the assay can be carried out after 1 h of incubation, either by direct microscopic observation, or with an automated microplate-reader at 630 nm. The limit of detection is 18-20 ng of gliotoxin in the well, depending on the used observation method. A high degree of specificity of the detection is brought about by the ability of the reducing reactant dithiothreitol to inhibit the biological activities of epipolythiodioxopiperazines (ETPs), such as gliotoxin, by reducing their polysulfide bridge. The bioassay allows a rapid primary screening of samples and a semi-quantitative evaluation of the gliotoxin concentration in extracts. The method has been used to study the gliotoxin production by different fungal strains, allowing to highlight 3 strains of Aspergillus fumigatus producing gliotoxin in various extracts.  相似文献   

12.
Pathogens of the Aspergillus species are frequently seen in deep-seated mycoses. We previously demonstrated that the culture filtrate of Aspergillus fumigatus (CF) has immunosuppressive effects on polymorphonuclear leukocytes (PMNs), which act as the main phagocytes to hyphae of Aspergillus fumigatus (A. fumigatus). But little is known about the gene expression profiles involved in it. Therefore we investigated the changes in gene expression in human PMNs treated with CF or gliotoxin at two time points, using microarray analysis. CF and gliotoxin changed the expression of 548 and 381 genes, respectively. Only 51 genes showed the same expression patterns with the two stimulants, and CF-induced changes in gene expression occurred comparatively earlier than those induced by gliotoxin. Among 31 genes encoding apoptosis, which were up- or down-regulated in this assay, only 3 genes were similarly changed by both kinds of stimulation. Apoptosis was detected and quantified using two apoptosis assays. CF and gliotoxin changed the expessions of only 3 out of 19 regulated genes related to inflammatory mediators and receptors similarly. The up-regulation of the gene encoding annexin 1 (ANXA1), which is known to be involved in extravasation and apoptosis of neutrophils, may play a role in the immunosuppressive effect of A. fumigatus. The difference in expression changes between CF and gliotoxin is presumed to be caused by the interaction among the components of CF and therefore the interaction is an area of interest for further investigation.  相似文献   

13.
Gliotoxin, a fungistatic metabolic product of Trichoderma viride   总被引:1,自引:0,他引:1  
Gliotoxin is shown to be a metabolic product of Trichoderma viride , and a semi-continuous apparatus for its production is described. Ammonia nitrogen is preferable to nitrate nitrogen, but a wide range of carbon sources, and organic or inorganic sulphur sources, are suitable for gliotoxin production. No organic supplements to a glucose-mineral medium have been found to affect gliotoxin production beneficially.
Data are presented showing gliotoxin to be moderately toxic to a wide range of bacteria, actinomycetes and fungi. T. viride itself is resistant to its toxic effects. It shows fungicidal activity when applied as a dust to cereal seeds bearing various seed-borne diseases, but is inferior to organomercury compounds for this purpose. Its value as a fungicide for control of plant or animal infections is reduced by the instability of aqueous solutions, except at low p H.  相似文献   

14.
Changes in enzyme activities of the plasma membrane makers were examined during phagocytosis using guinea-pig polymorphonuclear neutrophils. Incubation of neutrophils with fresh serum-opsonized zymosan particles showed a significant reduction in leucine aminopeptidase activity, whereas 5′-nucleotidase and alkaline phosphodieterase activities remained unchanged. Inactivation of leucine aminopeptidase activity was also observed by exposure of neutrophils to complement-opsonized zymosan particles, but not to non-opsonized zymosan, IgG-coated zymosan or polysterene latex particles. Pretreatment of neutrophils with cytochalasin B, which prevents phagocytosis but not surface binding of particles, provoked inactivation to the same degree as when the cells were allowed to phagocytose the particles. However, the inactivation during phagocytosis was protected by serine protease inhibitors. These findings suggest that loss of leucine aminopeptidase activity from phagocytosing cells may be mediated by certain serine protease inhibitor-sensitive factor(s) which are probably activated by the attachment of an opsonized zymosan particle to a specific membrane receptor, probably the C3b receptor.  相似文献   

15.
Receptors involved in the phagocytosis of microorganisms under nonopsonic conditions have been little studied in neutrophils. Complement receptor type 3 (CR3) is a pattern recognition receptor able to internalize zymosan and C3bi-coated particles. We report that Abs directed against CR3 strongly inhibited nonopsonic phagocytosis of Mycobacterium kansasii in human neutrophils. In these cells CR3 has been found associated with several GPI-anchored proteins localized in cholesterol-rich microdomains (rafts) of the plasma membrane. Cholesterol sequestration by nystatin, filipin, or beta-cyclodextrin as well as treatment of neutrophils with phosphatidylinositol phospholipase C to remove GPI-anchored proteins from the cell surface markedly inhibited phagocytosis of M. kansasii, without affecting phagocytosis of zymosan or serum-opsonized M. kansasii. Abs directed against several GPI-anchored proteins inhibited phagocytosis of M. kansasii, but not of zymosan. N:-acetyl-D-glucosamine, which is known to disrupt interactions between CR3 and GPI proteins, also strongly diminished phagocytosis of these mycobacteria. In conclusion, phagocytosis of M. kansasii involved CR3, GPI-anchored receptors, and cholesterol. In contrast, phagocytosis of zymosan or opsonized particles involved CR3, but not cholesterol or GPI proteins. We propose that CR3, when associated with a GPI protein, relocates in cholesterol-rich domains where M. kansasii are internalized. When CR3 is not associated with a GPI protein, it remains outside of these domains and mediates phagocytosis of zymosan and opsonized particles, but not of M. kansasii.  相似文献   

16.
陈芳艳  张常建  韩黎 《微生物学报》2017,57(10):1443-1451
胶霉毒素(gliotoxin,GT)是一个分子量为326 Da的小分子化合物,其骨架是由非核糖体肽合成酶Gli P催化苯丙氨酸和丝氨酸缩合成的环二肽,属于表聚硫代哌嗪二酮类化合物,是一种重要的真菌次级代谢产物。体内外研究已经表明,GT对动植物产生多种效应,不仅具有免疫抑制功能和诱导细胞凋亡作用,在生物防治方面也具有潜在的应用价值。本文将对有关GT生物合成、诱导宿主效应机制及其潜在应用价值进行综述。  相似文献   

17.
Myeloperoxidase (MPO), a major component of neutrophils, catalyzes the production of hypochlorous acid (HOCl) from hydrogen peroxide and chloride anion. Phagocytosis is a critical event induced by neutrophils for host defense and inflammation. Interestingly, we found that MPO-deficient (MPO?/?) neutrophils engulfed larger amounts of zymosan than wild-type neutrophils. Blocking of the CD11b subunit of complement receptor 3 (CR3) as well as inhibition of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) dramatically reduced zymosan phagocytosis. In contrast, blocking of dectin-1, toll-like receptor 2 (TLR2), or spleen tyrosine kinase (Syk) had no significant effects on phagocytosis. Western blotting analysis showed that inhibition of FAK decreased the phosphorylation of ERK1/2, indicating that ERK1/2 is a downstream regulator of FAK in neutrophils. Importantly, we found that cell surface expression of CD11b and phosphorylation of ERK1/2 was significantly higher in zymosan-stimulated MPO?/? neutrophils than in zymosan-stimulated wild-type neutrophils. Pretreatment with the MPO inhibitor 4-aminobenzoic acid hydrazide dramatically enhanced both zymosan phagocytosis and the surface expression of CD11b in wild-type neutrophils, but not in MPO?/? neutrophils. Collectively, these results strongly suggest that up-regulation of the CD11b/FAK/ERK signaling pathway due to absence of MPO enhances the zymosan phagocytic activity of mouse neutrophils.  相似文献   

18.
Phagocytosis and the microbicidal functions of neutrophils require dynamic changes of the actin cytoskeleton. We have investigated the role of gelsolin, a calcium-dependent actin severing and capping protein, in peripheral blood neutrophils from gelsolin-null (Gsn-) mice. The phagocytosis of complement opsonized yeast was only minimally affected. In contrast, phagocytosis of IgG-opsonized yeast was reduced close to background level in Gsn- neutrophils. Thus, gelsolin is essential for efficient IgG- but not complement-mediated phagocytosis. Furthermore, attachment of IgG-opsonized yeast to Gsn- neutrophils was reduced ( approximately 50%) but not to the same extent as ingestion ( approximately 73%). This was not due to reduced surface expression of the Fcgamma-receptor or its lateral mobility. This suggests that attachment and ingestion of IgG-opsonized yeast by murine neutrophils are actin-dependent and gelsolin is important for both steps in phagocytosis. We also investigated granule exocytosis and several steps in phagosome processing, namely the formation of actin around the phagosome, translocation of granules, and activation of the NADPH-oxidase. All these functions were normal in Gsn- neutrophils. Thus, the role of gelsolin is specific for IgG-mediated phagocytosis. Our data suggest that gelsolin is part of the molecular machinery that distinguishes complement and IgG-mediated phagocytosis. The latter requires a more dynamic reorganization of the cytoskeleton.  相似文献   

19.
In the course of screening for anti-platelet principles produced by micro-organisms, strong anti-platelet activity was detected in the culture broth of Aspergillus fumigatus Fres. The purified active compound was identified as gliotoxin. Gliotoxin inhibited ADP-induced aggregation as well as collagen- or arachidonate-induced aggregation of rabbit platelets (IC50 = about 27 μm) and also accelerated the dissociation of aggregates. Gliotoxin also inhibited the heat hemolysis of rabbit erythrocytes, suggesting that this agent is a membrane-stabilizing anti-aggregant. The disulfide structure in the gliotoxin molecule was responsible for the inhibitory activity, because des- thiogliotoxin had effects on neither platelet aggregation nor heat hemolysis of erythrocytes.  相似文献   

20.
木霉菌T23胶毒素合成基因的生物信息学分析与克隆   总被引:1,自引:0,他引:1  
胶毒素是生防木霉菌重要的次生代谢产物之一。本研究以生防木霉菌T23为供试材料,旨在通过生物信息学技术及表达分析,挖掘木霉菌T23中胶毒素合成候选基因,探索木霉菌胶毒素合成的分子调控机制,可为新型生物农药的开发及应用提供理论依据。研究表明,木霉菌T23中胶毒素合成候选基因簇全长28 kb,簇内包含了8个基因,分别与烟曲霉胶毒素合成基因簇内的gliP、gliC、gliN、gliK、gliI、gliG、gliF、gliM高度同源。提取培养2 d、3 d、4 d、5 d的木霉菌T23菌丝的RNA,通过半定量RT-PCR技术探索各候选基因在木霉菌T23不同生长时期的表达情况,显示各基因在不同生长时期均有表达,属于组成型表达基因。成功克隆得到木霉菌T23中的gliP-T23基因并完成基因结构分析,该基因全长6 339 bp,由4个外显子和3个内含子组成,为后续的基因功能验证提供基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号