首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Allergic asthma patients manifest airway inflammation and some show increases in eosinophils, T(H)2 cells, and cytokines, increased mucous production in the lung, and elevated serum IgE. This T(H)2-type response suggests a prominent role for T(H)2 cells and their cytokines in the pathology of this disease. The Tec family nonreceptor tyrosine kinase inducible T cell kinase (ITK) has been shown to play a role in the differentiation and/or function of T(H)2-type cells, suggesting that ITK may represent a good target for the control of asthma. Using a murine model of allergic asthma, we show here that ITK is involved in the development of immunological symptoms seen in this model. We show that mice lacking ITK have drastically reduced lung inflammation, eosinophil infiltration, and mucous production following induction of allergic asthma. Notably, T cell influx into the lung was reduced in mice lacking ITK. T cells from ITK(-/-) mice also exhibited reduced proliferation and cytokine secretion, in particular IL-5 and IL-13, in response to challenge with the allergen OVA, despite elevated levels of total IgE and increased OVA-specific IgE responses. Our results suggest that the tyrosine kinase ITK preferentially regulates the secretion of the T(H)2 cytokines IL-5 and IL-13 and may be an attractive target for antiasthmatic drugs.  相似文献   

2.
Recent studies have suggested the IL-4Ralpha expressed on lung epithelium is necessary for TH2-mediated goblet cell differentiation and mucus hypersecretion in a murine model of allergic lung disease. However, the IL-4Ralpha is expressed on numerous cell types that could contribute to the overall pathology and severity of asthma. The relative role of the receptor on these cells has not yet been conclusively delineated. To dissect the contribution of IL-4Ralpha in the development of pulmonary allergic responses, we generated murine radiation bone marrow (BM) chimeras. BM from IL-4Ralpha(+) or IL-4Ralpha(-) mice was transferred into recipient mice that expressed or lacked IL-4Ralpha. In the absence of IL-4Ralpha in recipient mice, there was no goblet cell metaplasia or mucus hypersecretion in response to OVA, even in the presence of TH2 cells and substantial eosinophilic infiltration. More importantly, we found that expression of the IL-4Ralpha on a nonlymphoid, MHC class II(+), BM-derived cell type contributes to the severity of inflammation and mucus production. These results suggest that IL-4 and IL-13 contribute to the development of allergic inflammation by stimulating a complex interaction between IL-4Ralpha(+) cell types of both bone marrow and non-bone marrow origin.  相似文献   

3.
Asthma is characterized by a predominant T(H)2 type immune response to airborne allergens. Controlling T(H)2 cell function has been proposed as therapy for this disease. We show here that ligands for the nuclear receptor peroxisome proliferator activated receptor (PPAR)gamma significantly reduced the immunological symptoms of allergic asthma in a murine model of this disease. A PPARgamma ligand, 15-deoxy-delta(12,14)-prostaglandin J(2), significantly inhibited production of the T(H)2 type cytokine IL-5 from T cells activated in vitro. More importantly, in a murine model of allergic asthma, mice treated orally with ciglitazone, a potent synthetic PPARgamma ligand, had significantly reduced lung inflammation and mucous production following induction of allergic asthma. T cells from these ciglitazone treated mice also produced less IFNgamma, IL-4, and IL-2 upon rechallenge in vitro with the model allergen. Our results suggest that ligands for PPARgamma may be effective treatments for asthmatic patients.  相似文献   

4.
Histamine has an important role in regulation of immune response which is mediated by differential expression of four distinct receptors, H1R-H4R. H1R and HR2 have previously been shown to be involved with modulation of lung inflammation. H4R is also expressed on inflammatory cells; therefore, we investigated the potential role of H4R in development of allergic asthma in a murine model. We determined that the H4R agonist 4-methylhistamine when delivered intratracheally before Ag challenge mitigated airway hyperreactivity and inflammation. This was associated with an increase in IL-10 and IFN-gamma, but not TGF-beta or IL-16, as well as a decrease in IL-13 in the bronchoalveolar lavage fluid. We also observed that H4R agonist instillation resulted in accumulation of FoxP3(+) T cells suggesting a direct effect on T regulatory cell recruitment. To investigate this further, we determined the in vitro effect of H4R stimulation on human T cell migration. The H4R agonist induced a 2- to 3-fold increase in T cell migration, similar to that seen for H1R agonists. Cells transmigrating to the H4R agonist, but not H1R, were skewed toward a CD4 cell expressing CD25 and intracellular FoxP3. H4R-responsive cells suppressed proliferation of autologous T cells, an effect that was dependent on IL-10 production. We conclude that H4R stimulation enriches for a regulatory T cell with potent suppressive activity for proliferation. These findings identify a novel function for H4R and suggest a potential therapeutic approach to attenuation of asthmatic inflammation.  相似文献   

5.
SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses   总被引:20,自引:0,他引:20  
Members of the suppressor of cytokine signaling (SOCS) family are involved in the pathogenesis of many inflammatory diseases. SOCS-3 is predominantly expressed in T-helper type 2 (T(H)2) cells, but its role in T(H)2-related allergic diseases remains to be investigated. In this study we provide a strong correlation between SOCS-3 expression and the pathology of asthma and atopic dermatitis, as well as serum IgE levels in allergic human patients. SOCS-3 transgenic mice showed increased T(H)2 responses and multiple pathological features characteristic of asthma in an airway hypersensitivity model system. In contrast, dominant-negative mutant SOCS-3 transgenic mice, as well as mice with a heterozygous deletion of Socs3, had decreased T(H)2 development. These data indicate that SOCS-3 has an important role in regulating the onset and maintenance of T(H)2-mediated allergic immune disease, and suggest that SOCS-3 may be a new therapeutic target for the development of antiallergic drugs.  相似文献   

6.
IL-4 and IL-13 play key roles in Th2 immunity and asthma pathogenesis. Although the function of these cytokines is partially linked through their shared use of IL-4Ralpha for signaling, the interplay between these cytokines in the development of memory Th2 responses is not well delineated. In this investigation, we show that both IL-4 and IL-13 influence the maturation of dendritic cells (DC) in the lung and their ability to regulate secretion of IFN-gamma and Th2 cytokines by memory CD4(+) T cells. Cocultures of wild-type T cells with pulmonary DC from allergic, cytokine-deficient mice demonstrated that IL-4 enhanced the capacity of DC to stimulate T cell secretion of Th2 cytokines, whereas IL-13 enhanced the capacity of DC to suppress T cell secretion of IFN-gamma. Because IL-4Ralpha is critical for IL-4 and IL-13 signaling, we also determined how variants of IL-4Ralpha influenced immune cell function. T cells derived from allergic mice expressing a high-affinity IL-4Ralpha variant produced higher levels of IL-5 and IL-13 compared with T cells derived from allergic mice expressing a low-affinity IL-4Ralpha variant. Although DC expressing different IL-4Ralpha variants did not differ in their capacity to influence Th2 cytokine production, they varied in their capacity to inhibit IFN-gamma production by T cells. Thus, IL-4 and IL-13 differentially regulate DC function and the way these cells regulate T cells. The affinity of IL-4Ralpha also appears to be a determinant in the balance between Th2 and IFN-gamma responses and thus the severity of allergic disease.  相似文献   

7.
IL-2 influences both survival and differentiation of CD4(+) T effector and regulatory T cells. We studied the effect of i.n. administration of Abs against the alpha- and the beta-chains of the IL-2R in a murine model of allergic asthma. Blockade of the beta- but not the alpha-chain of the IL-2R after allergen challenge led to a significant reduction of airway hyperresponsiveness. Although both treatments led to reduction of lung inflammation, IL-2 signaling, STAT-5 phosphorylation, and Th2-type cytokine production (IL-4 and IL-5) by lung T cells, IL-13 production and CD4(+) T cell survival were solely inhibited by the blockade of the IL-2R beta-chain. Moreover, local blockade of the common IL-2R/IL-15R beta-chain reduced NK cell number and IL-2 production by lung CD4(+)CD25(+) and CD4(+)CD25(-) T cells while inducing IL-10- and TGF-beta-producing CD4(+) T cells in the lung. This cytokine milieu was associated with reduced CD4(+) T cell proliferation in the draining lymph nodes. Thus, local blockade of the beta-chain of the IL-2R restored an immunosuppressive cytokine milieu in the lung that ameliorated both inflammation and airway hyperresponsiveness in experimental allergic asthma. These findings provide novel insights into the functional role of IL-2 signaling in experimental asthma and suggest that blockade of the IL-2R beta-chain might be useful for therapy of allergic asthma in humans.  相似文献   

8.
Histamine is an important inflammatory mediator that is released in airways during an asthmatic response. However, current antihistamine drugs are not effective in controlling the disease. The discovery of the histamine H4 receptor (H4R) prompted us to reinvestigate the role of histamine in pulmonary allergic responses. H4R-deficient mice and mice treated with H4R antagonists exhibited decreased allergic lung inflammation, with decreases in infiltrating lung eosinophils and lymphocytes and decreases in Th2 responses. Ex vivo restimulation of T cells showed decreases in IL-4, IL-5, IL-13, IL-6, and IL-17 levels, suggesting that T cell functions were disrupted. In vitro studies indicated that blockade of the H4R on dendritic cells leads to decreases in cytokine and chemokine production and limits their ability to induce Th2 responses in T cells. This work suggests that the H4R can modulate allergic responses via its influence on T cell activation. The study expands the known influences of histamine on the immune system and highlights the therapeutic potential of H4R antagonists in allergic conditions.  相似文献   

9.
10.

Background

The role of B cells in allergic asthma remains undefined. One mechanism by which B cells clearly contribute to allergic disease is via the production of specific immunoglobulin, and especially IgE. Cognate interactions with specific T cells result in T cell help for B cells, resulting in differentiation and immunoglobulin secretion. Proximal to (and required for) T cell-dependent immunoglobulin production, however, is antigen presentation by B cells. While interaction with T cells clearly has implications for B cell function and differentiation, this study investigated the role that B cells have in shaping the T cell response during chronic allergic lung disease.

Methodology/Principal Findings

In these studies, we used a clinically relevant mouse model of chronic allergic lung disease to study the role of B cells and B cell antigen presentation in this disease. In these studies we present several novel findings: 1) Lung B cells from chronically allergen challenged mice up-regulated MHC II and costimulatory molecules CD40, CD80 and CD86. 2) Using in vitro studies, B cells from the lungs of allergen challenged mice could present antigen to T cells, as assessed by T cell proliferation and the preferential production of Th2 cytokines. 3) Following chronic allergen challenge, the levels of Th2 cytokines IL-4 and IL-5 in the lungs and airways were significantly attenuated in B cell −/− mice, relative to controls. 4) B cell driven Th2 responses and mucus hyper secretion in the lungs were dependent upon MHC II expression by B cells.

Conclusions/Significance

Collectively, these results provide evidence for antigen presentation as a novel mechanism by which B cells contribute to chronic allergic disease. These findings give new insight into the mechanisms by which B cells promote asthma and other chronic diseases.  相似文献   

11.

Background

Th2 cell activation and T regulatory cell (Treg) deficiency are key features of allergy. This applies for asthma and rhinitis. However with a same atopic background, some patients will develop rhinitis and asthma, whereas others will display rhinitis only. Co-receptors are pivotal in determining the type of T cell activation, but their role in allergic asthma and rhinitis has not been explored. Our objective was to assess whether allergen-induced T cell activation differs from allergic rhinitis to allergic rhinitis with asthma, and explore the role of ICOS, CD28 and CTLA-4.

Methods

T cell co-receptor and cytokine expressions were assessed by flow cytometry in PBMC from 18 house dust mite (HDM) allergic rhinitics (R), 18 HDM allergic rhinitics and asthmatics (AR), 13 non allergic asthmatics (A) and 20 controls, with or without anti-co-receptors antibodies.

Results

In asthmatics (A+AR), a constitutive decrease of CTLA-4+ and of CD4+CD25+Foxp3+ cells was found, with an increase of IFN-γ+ cells. In allergic subjects (R + AR), allergen stimulation induced CD28 together with IL-4 and IL-13, and decreased the proportion of CTLA-4+, IL-10+ and CD4+CD25+Foxp3+ cells. Anti-ICOS and anti-CD28 antibodies blocked allergen-induced IL-4 and IL-13. IL-13 production also involved CTLA-4.

Conclusions

T cell activation differs between allergic rhinitis and asthma. In asthma, a constitutive, co-receptor independent, Th1 activation and Treg deficiency is found. In allergic rhinitis, an allergen-induced Treg cell deficiency is seen, as well as an ICOS-, CD28- and CTLA-4-dependent Th2 activation. Allergic asthmatics display both characteristics.  相似文献   

12.
Immunological mechanisms leading to increased asthma susceptibility in early life remain obscure. In this study, we examined the effects of neonatal Ab treatments targeting T cell populations on the development of an asthma syndrome. We used a model of increased asthma susceptibility where offspring of asthmatic BALB/c mother mice are more prone (than normal pups) to develop the disease. Neonatal pretreatment of naive pups with mAb directed against the IL-2Ralpha chain (CD25), the costimulatory molecule glucocorticoid-induced TNFR family related gene, and the inhibitory molecule CTLA-4 elicited contrasting effects in offspring depending on the mother's asthma status. Specifically, neonatal CD25(high) T cell depletion stimulated asthma susceptibility in normal offspring whereas it ameliorated the condition of pups born of asthmatic mothers. Conversely, glucocorticoid-induced TNFR family related gene ligation as a primary signal reduced the spleen cellularity and largely abrogated asthma susceptibility in asthma-prone offspring, without inducing disease in normal pups. Striking changes in Th1/Th2 cytokine levels, especially IL-4, followed mAb pretreatment and were consistent with the impact on asthma susceptibility. These results point to major differences in neonatal T cell population and responsiveness related to maternal asthma history. Interventions that temporarily remove and/or inactivate specific T cell subsets may therefore prove useful to attenuate early life asthma susceptibility and prevent the development of Th2-driven allergic airway disease.  相似文献   

13.
变应性哮喘是一种由辅助性T细胞(T helper cell,Th cell)调节的慢性炎症性疾病。Th1/Th2的失衡一直被认为是变应性哮喘的发病机制,Th2细胞及其分泌的细胞因子白介素4(interleukin 4,IL-4)、IL-5以及IL-13在变应性哮喘特异性症状的发病中发挥重要作用。最近研究发现Th17细胞及其分泌的IL-17参与变应性哮喘的发展过程,IL-23在Th17细胞维持生存和功能成熟中发挥重要作用,并参与抗原诱导的气道炎症反应。该文对目前IL-23/Th17轴在变应性气道炎症反应中的研究进展作一综述。  相似文献   

14.
15.
Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.  相似文献   

16.
BACKGROUND: T lymphocytes infiltrating airways during the allergic immune response play a fundamental role in recruiting other specialized cells, such as eosinophils, by secreting interleukin 5 (IL-5), and promoting local and systemic IgE synthesis by producing IL-4. Whether these presumed allergen-specific T cells are of mucosal or systemic origin is still a matter of conjecture. MATERIALS AND METHODS: Immunophenotype, IL-4 production, and in vitro proliferative response to specific or unrelated allergens were analyzed in the bronchoalveolar lavage (BAL) fluid lymphocyte suspensions obtained from untreated patients with allergic asthma. Healthy subjects and patients affected by pulmonary sarcoidosis, a granulomatous lung disease characterized by infiltrating Th1 CD4+ lymphocytes, served as controls. RESULTS: The proportions of gamma delta T lymphocytes, mostly CD4+ or CD4- (-)CD8-, was higher in asthmatic subjects than in controls (p < 0.05). Most BAL gamma delta CD4+ lymphocytes of asthmatic patients displayed the T cell receptor (TCR)-gamma delta V delta 1 chain. While CD30 antigen coexpression on the surface of BAL alpha beta(+) T lymphocytes was low (ranging from 5 to 12%), about half of pulmonary gamma delta T cells coexpressed it. These cells produced IL-4 and negligible amounts of interferon-gamma (IFN gamma), and proliferated in vitro in response to purified specific but not unrelated allergens. In contrast, control or sarcoidosis gamma delta T cells never displayed the CD30 surface molecule or produced significant quantities of IL-4. CONCLUSIONS: These findings not only confirm our previous hypothesis that the allergen-specific Th2-type lymphocytes found in the lungs of asthmatic patients are gamma delta T cells belonging to airway mucosal immunocytes, but also strongly support the notion that asthma is a local rather than a systemic disease.  相似文献   

17.
Regulatory T cells (Treg) play a decisive role in many diseases including asthma and allergen-induced lung inflammation. However, little progress has been made developing new therapeutic strategies for pulmonary disorders. In the current study we demonstrate that cytokine:antibody complexes of IL-2 and anti-IL-2 mAb reduce the severity of allergen-induced inflammation in the lung by expanding Tregs in vivo. Unlike rIL-2 or anti-IL-2 mAb treatment alone, IL-2:anti-IL-2 complexes dampened airway inflammation and eosinophilia while suppressing IL-5 and eotaxin-1 production. Mucus production, airway hyperresponsiveness to methacholine, and parenchymal tissue inflammation were also dramatically reduced following IL-2:anti-IL-2 treatment. The suppression in allergic airway disease was associated with a marked expansion of Tregs (IL-10(+)CD4(+)CD25(+) and Foxp3(+)CD4(+)CD25(+)) in the tissues, with a corresponding decrease in effector T cell responses. The ability of IL-2:anti-IL-2 complexes to suppress airway inflammation was dependent on Treg-derived IL-10, as IL-10(+/+), but not IL-10(-/-) Tregs, were capable of mediating the suppression. Furthermore, a therapeutic protocol using a model of established airway allergy highlighted the ability of IL-2:anti-IL-2 complexes to expand Tregs and prevent successive airway inflammation and airway hyperresponsiveness. This study suggests that endogenous Treg therapy may be a useful tool to combat the rising incidence of allergic airway disease.  相似文献   

18.
The incidence of allergic asthma has almost doubled in the past two decades. Numerous epidemiological studies have linked the recent surge in atopic disease with decreased exposure to infections in early childhood as a result of a more westernized lifestyle. However, a clear mechanistic explanation for how this might occur is still lacking. An answer might lie in the presently unfolding story of various regulatory T-cell populations that can limit adaptive immune responses, including T helper 2 (T(H)2)-cell-mediated allergic airway disease.  相似文献   

19.
Eosinophils are found in the lungs of humans with allergic asthma, as well as in the lungs of animals in models of this disease. Increasing evidence suggests that these cells are integral to the development of allergic asthma in C57BL/6 mice. However, the specific function of eosinophils that is required for this event is not known. In this study, we experimentally validate a dynamic computational model and perform follow-up experimental observations to determine the mechanism of eosinophil modulation of T cell recruitment to the lung during development of allergic asthma. We find that eosinophils deficient in IL-13 were unable to rescue airway hyperresponsiveness, T cell recruitment to the lungs, and Th2 cytokine/chemokine production in ΔdblGATA eosinophil-deficient mice, even if Th2 cells were present. However, eosinophil-derived IL-13 alone was unable to rescue allergic asthma responses in the absence of competence of other IL-13-producing cells. We further computationally investigate the role of other cell types in the production of IL-13, which led to the various predictions including early and late pulses of IL-13 during airway hyperresponsiveness. These experiments suggest that eosinophils and T cells have an interdependent relationship, centered on IL-13, which regulates T cell recruitment to the lung and development of allergic asthma.  相似文献   

20.
Respiratory tolerance is inhibited by the administration of corticosteroids   总被引:3,自引:0,他引:3  
Corticosteroids constitute the most effective current anti-inflammatory therapy for acute and chronic forms of allergic diseases and asthma. Corticosteroids are highly effective in inhibiting the effector function of Th2 cells, eosinophils, and epithelial cells. However, treatment with corticosteroids may also limit beneficial T cell responses, including respiratory tolerance and the development of regulatory T cells (T(Reg)), which actively suppress inflammation in allergic diseases. To examine this possibility, we investigated the effects of corticosteroid administration on the development of respiratory tolerance. Respiratory exposure to Ag-induced T cell tolerance and prevented the subsequent development of allergen-induced airway hyperreactivity. However, treatment with dexamethasone during the delivery of respiratory Ag prevented tolerance, such that allergen sensitization and severe airway hyperreactivity subsequently occurred. Treatment with dexamethasone during respiratory exposure to allergen eliminated the development of IL-10-secreting dendritic cells, which was required for the induction of IL-10-producing allergen-specific T(Reg) cells. Therefore, because allergen-specific T(Reg) cells normally develop to prevent allergic disease and asthma, our results suggest that treatment with corticosteroids, which limit the development of T(Reg) cells and tolerance to allergens, could enhance subsequent Th2 responses and aggravate the long-term course of allergic diseases and asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号