首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence and spread of multidrug resistant Plasmodium falciparum has severely limited the therapeutic options for the treatment of malaria. With ever-increasing failure rates associated with chloroquine or sulphadoxine-pyrimethamine treatment, attention has turned to the few alternatives, which include quinine and mefloquine. Here, we have investigated the role of pfmdr1 3' coding region point mutations in antimalarial drug susceptibility by allelic exchange in the GC03 and 3BA6 parasite lines. Results with pfmdr1-recombinant clones indicate a significant role for the N1042D mutation in contributing to resistance to quinine and its diastereomer quinidine. The triple mutations S1034C/N1042D/D1246Y, highly prevalent in South America, were also found to enhance parasite susceptibility to mefloquine, halofantrine and artemisinin. pfmdr1 3' mutations showed minimal effect on P. falciparum resistance to chloroquine or its metabolite mono-desethylchloroquine in these parasite lines, in contrast to previously published results obtained with 7G8 parasites. This study supports the hypothesis that pfmdr1 3' point mutations can significantly affect parasite susceptibility to a wide range of antimalarials in a strain-specific manner that depends on the parasite genetic background.  相似文献   

2.
Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.  相似文献   

3.
Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite’s susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite’s susceptibility to lumefantrine and mefloquine—a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite’s digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine’s access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.  相似文献   

4.
Multiple drug resistance genes in malaria -- from epistasis to epidemiology   总被引:1,自引:0,他引:1  
A decline in our ability to successfully treat patients with malaria infections of the parasitic protozoan Plasmodium falciparum with cheap quinoline drugs has led to a huge escalation in morbidity and mortality in recent years. Many approaches have been taken, including classical genetics, reverse genetics and molecular epidemiology, to identify the molecular determinants underlying this resistance. The contribution of the P. falciparum multidrug resistance gene, pfmdr1, to antimalarial resistance has been a source of controversy for over a decade since it was first identified. In the current issue of Molecular Microbiology, Sidhu and colleagues use powerful reverse genetics to demonstrate the importance of commonly occurring alleles of pfmdr1 in conferring resistance to the second-line drugs quinine and sensitivity to the new alternatives mefloquine and artemisinin. They also elegantly highlight the importance of genetic background and epistasis between pfmdr1 and other potential modulators of drug resistance. Such molecular knowledge will facilitate surveillance/monitoring and aid the development of strategies for the reversal of resistance.  相似文献   

5.
The recent reports of artemisinin (ART) resistance in the Thai-Cambodian border area raise a serious concern on the long-term efficacy of ARTs. To elucidate the resistance mechanisms, we performed in vitro selection with dihydroartemisinin (DHA) and obtained two parasite clones from Dd2 with more than 25-fold decrease in susceptibility to DHA. The DHA-resistant clones were more tolerant of stressful growth conditions and more resistant to several commonly used antimalarial drugs than Dd2. The result is worrisome as many of the drugs are currently used as ART partners in malaria control. This study showed that the DHA resistance is not limited to ring stage, but also occurred in trophozoites and schizonts. Microarray and biochemical analyses revealed pfmdr1 amplification, elevation of the antioxidant defence network, and increased expression of many chaperones in the DHA-resistant parasites. Without drug pressure, the DHA-resistant parasites reverted to sensitivity in approximately 8 weeks, accompanied by de-amplification of pfmdr1 and reduced antioxidant activities. The parallel decrease and increase in pfmdr1 copy number and antioxidant activity and the up and down of DHA sensitivity strongly suggest that pfmdr1 and antioxidant defence play a role in in vitro resistance to DHA, providing potential molecular markers for ART resistance.  相似文献   

6.
Resistance to quinoline antimalarial drugs has emerged in different parts of the world and involves sets of discrete mutational changes in pfcrt and pfmdr1 in the human malaria parasite Plasmodium falciparum. To better understand how the different polymorphic haplotypes of pfmdr1 and pfcrt contribute to drug resistance, we have conducted a linkage analysis in the F1 progeny of a genetic cross where we assess both the susceptibility and the amount of accumulation of chloroquine, amodiaquine, quinine and quinidine. Our data show that the different pfcrt and pfmdr1 haplotypes confer drug-specific responses which, depending on the drug, may affect drug accumulation or susceptibility or both. These findings suggest that PfCRT and PfMDR1 are carriers of antimalarial drugs, but that the interaction with a drug interferes with the carriers' natural transport function such that they are now themselves targets of these drugs. How well a mutant PfCRT and PfMDR1 type copes with its competing transport functions is determined by its specific sets of amino acid substitutions.  相似文献   

7.
Wang Z  Parker D  Meng H  Wu L  Li J  Zhao Z  Zhang R  Fan Q  Wang H  Cui L  Yang Z 《PloS one》2012,7(5):e30927
Drug resistance has always been one of the most important impediments to global malaria control. Artemisinin resistance has recently been confirmed in the Greater Mekong Subregion (GMS) and efforts for surveillance and containment are intensified. To determine potential mechanisms of artemisinin resistance and monitor the emergence and spread of resistance in other regions of the GMS, we investigated the in vitro sensitivity of 51 culture-adapted parasite isolates from the China-Myanmar border area to four drugs. The 50% inhibitory concentrations (IC50s) of dihydroartemisinin, mefloquine and lumefantrine were clustered in a relatively narrow, 3- to 6-fold range, whereas the IC50 range of artesunate was 12-fold. We assessed the polymorphisms of candidate resistance genes pfcrt, pfmdr1, pfATP6, pfmdr6 and pfMT (a putative metabolite/drug transporter). The K76T mutation in pfcrt reached fixation in the study parasite population, whereas point mutations in pfmdr1 and pfATP6 had low levels of prevalence. In addition, pfmdr1 gene amplification was not detected. None of the mutations in pfmdr1 and pfATP6 was associated significantly with in vitro sensitivity to artemisinin derivatives. The ABC transporter gene pfmdr6 harbored two point mutations, two indels, and number variations in three simple repeats. Only the length variation in a microsatellite repeat appeared associated with altered sensitivity to dihydroartemisinin. The PfMT gene had two point mutations and one codon deletion; the I30N and N496– both reached high levels of prevalence. However, none of the SNPs or haplotypes in PfMT were correlated significantly with resistance to the four tested drugs. Compared with other parasite populations from the GMS, our studies revealed drastically different genotype and drug sensitivity profiles in parasites from the China-Myanmar border area, where artemisinins have been deployed extensively for over 30 years.  相似文献   

8.
In Uganda, artemether-lumefantrine was introduced as an artemisinin-based combination therapy (ACT) for malaria in 2006. We have previously reported a moderate decrease in ex vivo efficacy of lumefantrine in Northern Uganda, where we also detected ex vivo artemisinin-resistant Plasmodium falciparum. Therefore, it is necessary to search for candidate partner alternatives for ACT. Here, we investigated ex vivo susceptibility to four ACT partner drugs as well as quinine and chloroquine, in 321 cases between 2013 and 2018. Drug-resistant mutations in pfcrt and pfmdr1 were also determined. Ex vivo susceptibility to amodiaquine, quinine, and chloroquine was well preserved, whereas resistance to mefloquine was found in 45.8%. There were few cases of multi-drug resistance. Reduced sensitivity to mefloquine and lumefantrine was significantly associated with the pfcrt K76 wild-type allele, in contrast to the association between chloroquine resistance and the K76T allele. Pfmdr1 duplication was not detected in any of the cases. Amodiaquine, a widely used partner drug for ACT in African countries, may be the first promising alternative in case lumefantrine resistance emerges. Therapeutic use of mefloquine may not be recommended in this area. This study also emphasizes the need for sustained monitoring of antimalarial susceptibility in Northern Uganda to develop proper treatment strategies.  相似文献   

9.
The P-glycoprotein homolog of the human malaria parasite Plasmodium falciparum (Pgh-1) has been implicated in decreased susceptibility to several antimalarial drugs, including quinine, mefloquine and artemisinin. Pgh-1 mainly resides within the parasite's food vacuolar membrane. Here, we describe a surrogate assay for Pgh-1 function based on the subcellular distribution of Fluo-4 acetoxymethylester and its free fluorochrome. We identified two distinct Fluo-4 staining phenotypes: preferential staining of the food vacuole versus a more diffuse staining of the entire parasite. Genetic, positional cloning and pharmacological data causatively link the food vacuolar Fluo-4 phenotype to those Pgh-1 variants that are associated with altered drug responses. On the basis of our data, we propose that Pgh-1 imports solutes, including certain antimalarial drugs, into the parasite's food vacuole. The implications of our findings for drug resistance mechanisms and testing are discussed.  相似文献   

10.
The declining efficacy of chloroquine and pyrimethamine/sulphadoxine in the treatment of human malaria has led to the use of newer antimalarials such as mefloquine and artemisinin. Sequence polymorphisms in the pfmdr1 gene, the gene encoding the plasmodial homologue of mammalian multidrug resistance transporters, have previously been linked to resistance to chloroquine in some, but not all, studies. In this study, we have used a genetic cross between the strains HB3 and 3D7 to study inheritance of sensitivity to the structurally unrelated drugs mefloquine and artemisinin, and to several other antimalarials. We find a complete allelic association between the HB3-like pfmdr1 allele and increased sensitivity to these drugs in the progeny. Different pfmdr1 sequence polymorphisms in other unrelated lines were also associated with increased sensitivity to these drugs. Our results indicate that the pfmdr1 gene is an important determinant of susceptibility to antimalarials, which has major implications for the future development of resistance.  相似文献   

11.
Efforts to control malaria worldwide have been hindered by the development and expansion of parasite populations resistant to many first-line antimalarial compounds. Two of the best-characterized determinants of drug resistance in the human malaria parasite Plasmodium falciparum are pfmdr1 and pfcrt, although the mechanisms by which resistance is mediated by these genes is still not clear. In order to determine whether mutations in pfmdr1 associated with chloroquine resistance affect the capacity of the parasite to persist when drug pressure is removed, we conducted competition experiments between P. falciparum strains in which the endogenous pfmdr1 locus was modified by allelic exchange. In the absence of selective pressure, the component of chloroquine resistance attributable to mutations at codons 1034, 1042 and 1246 in the pfmdr1 gene also gave rise to a substantial fitness cost in the intraerythrocytic asexual stage of the parasite. The loss of fitness incurred by these mutations was calculated to be 25% with respect to an otherwise genetically identical strain in which wild-type polymorphisms had been substituted at these three codons. At least part of the fitness loss may be attributed to a diminished merozoite viability. These in vitro results support recent in vivo observations that in several countries where chloroquine use has been suspended because of widespread resistance, sensitive strains are re-emerging.  相似文献   

12.
Emerging resistance to first‐line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine‐containing compound ACT‐451840 exhibits single‐digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro‐derived ACT‐451840‐resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane‐bound ATP‐binding cassette transporter known to alter P. falciparum susceptibility to multiple first‐line antimalarials. CRISPR‐Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT‐451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9‐introduced pfmdr1 mutations also acquired ACT‐451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease‐relieving and transmission‐blocking antimalarials.  相似文献   

13.
The purpose of treatment for uncomplicated malaria is to produce a radical cure using the combination of: artesunate (4 mg/kg/day) plus mefloquine (8 mg/kg day) for 3 days: a fixed dose of artemether and lumefantrine (20/120 mg tablet) named Coartem (4 tablets twice a day for three days for adults weighing more than 35 kg): quinine 10 mg/kg 8-hourly plus tetracycline 250 mg 6-hourly for 7 days (or doxycycline 200 mg as an alternative to tetracycline once a day for 7 days) in patients aged 8 years and over: Malarone (in adult 4 tablets daily for 3 days). In treating severe malaria, early diagnosis and treatment with a potent antimalarial drug is recommended to save the patient's life. The antimalarial drugs of choice are: intravenous quinine or a parenteral form of an artemisinin derivative (artesunate i.v./i.m. for 2.4 mg/kg followed by 1.2 mg/kg injection at 12 and 24 hr and then daily for 5 dayss; artemether i.m. 3.2 mg/kg injection followed by 1.6 mg/kg at 12 and 24 hrs and then daily for 5 days; artemether i.m. (Artemotil) with the same dose of artemether or artesunate suppository (5 mg/kg) given rectally 12 hourly for 3 days. Oral artemisinin derivatives (artesunate, artemether, and dihydroartemisinin with 4 mg/kg/day) could replace parenteral forms when patients can tolerate oral medication. Oral mefloquine (25 mg/kg divided into two doses 8 hrs apart) should be given at the end of the artemisinin treatment course to reduce recrudescence.  相似文献   

14.
Majori G 《Parassitologia》2004,46(1-2):85-87
The existing armamentarium of drugs for the treatment and prevention of malaria is limited primarily by resistance (and cross-resistance between closely related drugs). However, most of these drugs still have a place and their life-span could be prolonged if better deployed and used, and also by rationally combining them based on pharmacodynamic and pharmacokinetic properties. Newer compounds are also being developed. The nature of malaria disease and its prevalence in the developing world call for innovative approaches to develop new affordable drugs and to safeguard the available ones. According to WHO, the concept of combination therapy is based on the synergistic or additive potential of two or more drugs, to improve therapeutic efficacy and also delay the development of resistance to the individual components of the combination. Combination therapy (CT) with antimalarial drugs is the simultaneous use of two or more blood schizontocidal drugs with independent modes of action and different biochemical targets in the parasite. In the context of this definition, multiple-drug therapies that include a nonantimalarial drug to enhance the antimalarial effect of a blood schizontocidal drug are not considered combination therapy. Similarly, certain antimalarial drugs that fit the criteria of synergistic fixed-dose combinations are operationally considered as single products in that neither of the individual components would be given alone for anti-malarial therapy. An example is sulfadoxine-pyrimethamine. Artemisinin-based combination therapies have been shown to improve treatment efficacy and also contain drug resistance in South-East Asia. However, major challenges exist in the deployment and use of antimalarial drug combination therapies, particularly in Africa. These include: 1) the choice of drug combinations best suited for the different epidemiological situations; 2) the cost of combination therapy; 3) the timing of the introduction of combination therapy; 4) the operational obstacles to implementation, especially compliance. As a response to increasing levels of antimalarial resistance, the World Health Organization (WHO) recommends that all countries experiencing resistance to conventional monotherapies, such as chloroquine, amodiaquine or sulfadoxine/pyrimethamine, should use combination therapies, preferably those containing artemisinin derivatives (ACTs--artemisinin-based combination therapies) for malaria caused by Plasmodium falciparum. There is a promising role of such compounds in replacing or complementing current options. Since 1979, several different formulations of artemisinin and its derivatives have been produced and studied in China in several thousand patients for either P. falciparum or P. vivax malaria. To date, there is no evidence of drug resistance to these compounds. The use of artemisinin, artemether, arteether and artesunate for either uncomplicated or severe malaria is now spreading through almost all malarious areas of the world, although some of they have no patent protection, their development (with few exceptions) has not followed yet full international standards. Both artesunate, artemether and arteether are rapidly and extensively converted to their common bioactive metabolite, dihydroarte-misinin. WHO currently recommends the following therapeutic options: 1) artemether/lumefantrine; 2) artesunate plus amodiaquine; 3) artesunate plus sulfadoxine/pyrimethamine (in areas where SP efficacy remains high); 4) artesunate plus mefloquine (in areas with low to moderate transmission); and 5) amodiaquine plus sulfadoxine/pyrimethamine, in areas where efficacy of both amodiaquine and sulfadoxine/pyrimethamine remains high (mainly limited to countries in West Africa). This non artemisinin-based combination therapy is reserved as an interim option for countries, which, for whatever reason, are unable immediately to move to ACTs.  相似文献   

15.
An assay was developed measuring the disruption of rosettes between Plasmodium falciparuminfected (trophozoites) and uninfected erythrocytes by the antimalarial drugs quinine, artemisinin mefloquine, primaquine, pyrimethamine, chloroquine and proguanil. At 4 hr incubation rosettes were disrupted by all the drugs in a dose dependent manner. Artemisinin and quinine were the most effective anti-malarials at disrupting rosettes at their therapeutic concentrations with South African RSA 14, 15, 17 and The Gambian FCR-3 P. falciparum strains. The least effective drugs were proguanil and chloroquine. A combination of artemisinin and mefloquine was more effective than each drug alone. The combinations of pyrimethamine or primaquine, with quinine disrupted more rosettes than quinine alone. Quinine may be an effective drug in the treatment of severe malaria because the drug efficiently reduces the number of rosettes.  相似文献   

16.
Chloroquine has been the mainstay of antimalarial chemotherapy but the rapid spread of resistance to this important drug has now compromised its efficacy. The mechanism of chloroquine resistance has not been known but recent evidence from Plasmodium falciparum, the causative agent of the most severe form of human malaria, suggested similarities to the multidrug resistance phenotype (MDR) of mammalian tumour cells which is mediated by a protein molecule termed P-glycoprotein. Two mdr genes (pfmdr1 and pfmdr2) encoding P-glycoprotein homologues have been identified in P. falciparum and one of these (pfmdr1) has several alleles that have been linked to the chloroquine resistance phenotype. In contrast analysis of a genetic cross between chloroquine-resistant and -sensitive P. falciparum has suggested that the genes encoding the known P-glycoprotein homologues are not linked. This review outlines the similarities of the chloroquine resistance phenotype with the MDR phenotype of mammalian tumour cells and explores the possible role of the pfmdr genes.  相似文献   

17.
18.
19.

Background

Multi-drug resistant Plasmodium falciparum is a major obstacle to malaria control and is emerging as a complex phenomenon. Mechanisms of drug evasion based on the intracellular extrusion of the drug and/or modification of target proteins have been described. However, cellular mechanisms related with metabolic activity have also been seen in eukaryotic systems, e.g. cancer cells. Recent observations suggest that such mechanism may occur in P. falciparum.

Methodology/Principal Findings

We therefore investigated the effect of mefloquine exposure on the cell cycle of three P. falciparum clones (3D7, FCB, W2) with different drug susceptibilities, while investigating in parallel the expression of four genes coding for confirmed and putative drug transporters (pfcrt, pfmdr1, pfmrp1 and pfmrp2). Mefloquine induced a previously not described dose and clone dependent delay in the intra-erythrocytic cycle of the parasite. Drug impact on cell cycle progression and gene expression was then merged using a non-linear regression model to determine specific drug driven expression. This revealed a mild, but significant, mefloquine driven gene induction up to 1.5 fold.

Conclusions/Significance

Both cell cycle delay and induced gene expression represent potentially important mechanisms for parasites to escape the effect of the antimalarial drug.  相似文献   

20.
Resistance of Plasmodium falciparum to antimalarials is considered one of the factors responsible for the impairment of the malaria treatment and control worldwide. Resistance emerges as a result of selection and then disemination of spontaneous mutant parasites with reduced drug susceptibility. Combination therapy is considered as the main strategy to control antimalarial drug resistance. Currently, combination therapies that include artemisinin derivatives are highly recommended. Combination therapy has been used in Colombia for more than 20 years; however, its impact on preventing the dissemination of drug resistance is unknown. This paper reviews the theoretical bases and clinical studies that support the use of combination therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号