首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the K d value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis.  相似文献   

3.
FK506‐binding protein 22 (FKBP22) from the psychrotophic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) is a homodimeric protein with peptidyl prolyl cis‐trans isomerase (PPIase) activity. Each monomer consists of the N‐terminal domain responsible for dimerization and C‐terminal catalytic domain. To reveal interactions at the dimer interface of SIB1 FKBP22, the crystal structure of the N‐domain of SIB1 FKBP22 (SN‐FKBP22, residues 1‐68) was determined at 1.9 Å resolution. SN‐FKBP22 forms a dimer, in which each monomer consists of three helices (α1, α2, and α3N). In the dimer, two monomers have head‐to‐head interactions, in which residues 8–64 of one monomer form tight interface with the corresponding residues of the other. The interface is featured by the presence of a Val‐Leu knot, in which Val37 and Leu41 of one monomer interact with Val41 and Leu37 of the other, respectively. To examine whether SIB1 FKBP22 is dissociated into the monomers by disruption of this knot, the mutant protein V37R/L41R‐FKBP22, in which Val37 and Leu41 of SIB1 FKBP22 are simultaneously replaced by Arg, was constructed and biochemically characterized. This mutant protein was indistinguishable from the SIB1 FKBP22 derivative lacking the N‐domain in oligomeric state, far‐UV CD spectrum, thermal denaturation curve, PPIase activity, and binding ability to a folding intermediate of protein, suggesting that the N‐domain of V37R/L41R‐FKBP22 is disordered. We propose that a Val‐Leu knot at the dimer interface of SIB1 FKBP22 is important for dimerization and dimerization is required for folding of the N‐domain.  相似文献   

4.
Lee S  Xue Y  Hu J  Wang Y  Liu X  Demeler B  Ha Y 《Biochemistry》2011,50(24):5453-5464
Amyloid precursor protein (APP) is genetically linked to Alzheimer's disease. APP is a type I membrane protein, and its oligomeric structure is potentially important because this property may play a role in its function or affect the processing of the precursor by the secretases to generate amyloid β-peptide. Several independent studies have shown that APP can form dimers in the cell, but how it dimerizes remains controversial. At least three regions of the precursor, including a centrally located and conserved domain called E2, have been proposed to contribute to dimerization. Here we report two new crystal structures of E2, one from APP and the other from APLP1, a mammalian APP homologue. Comparison with an earlier APP structure, which was determined in a different space group, shows that the E2 domains share a conserved and antiparallel mode of dimerization. Biophysical measurements in solution show that heparin binding induces E2 dimerization. The 2.1 ? resolution electron density map also reveals phosphate ions that are bound to the protein surface. Mutational analysis shows that protein residues interacting with the phosphate ions are also involved in heparin binding. The locations of two of these residues, Arg-369 and His-433, at the dimeric interface suggest a mechanism for heparin-induced protein dimerization.  相似文献   

5.
Systematic Mutational Analysis of the Yeast Act1 Gene   总被引:34,自引:0,他引:34       下载免费PDF全文
K. F. Wertman  D. G. Drubin    D. Botstein 《Genetics》1992,132(2):337-350
We report the isolation and characterization of a synoptic set of site-directed mutations distributed throughout the single actin gene of Saccharomyces cerevisiae. Mutations were systematically targeted to the surface of the protein by identifying clusters of 2 or more charged residues in the primary sequence; every charged residue in a cluster was replaced with alanine. Mutations were recovered in high yield (34 of 36 constructed) as heterozygous diploids. Mutant phenotypes were examined in haploid segregants: 11 were recessive lethal, 16 conditional-lethal (including temperature-sensitive and salt-sensitive) and 7 had no discernible phenotype. Genetic analysis suggested that the two mutations constructed but not recovered in yeast may have a dominant defective phenotype. Location of the mutant residues on the three-dimensional structure of the rabbit muscle actin monomer confirmed that most (81%) of the charged residues we altered lie at or near the surface of the protein, confirming a key assumption of the method. Many of the new act1 alleles have properties readily interpreted in light of the actin structure and should prove useful in both genetic and biochemical studies of actin function.  相似文献   

6.
7.
8.
Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca2+ signaling since Ca2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface.  相似文献   

9.
Trbp111 is a 111 amino acid Aquifex aeolicus structure-specific tRNA-binding protein that has homologous counterparts distributed throughout evolution. A dimer is the functional unit for binding a single tRNA. Here we report the 3D structures of the A.aeolicus protein and its Escherichia coli homolog at resolutions of 2.50 and 1.87 A, respectively. The structure shows a symmetrical dimer of two core domains and a central dimerization domain where the N- and C-terminal regions of Trbp111 form an extensive dimer interface. The core of the monomer is a classical oligonucleotide/oligosaccharide-binding (OB) fold with a five-stranded ss-barrel and a small capping helix. This structure is similar to that seen in the anticodon-binding domain of three class II tRNA synthetases and several other proteins. Mutational analysis identified sites important for interactions with tRNA. These residues line the inner surfaces of two clefts formed between the ss-barrel of each monomer and the dimer interface. The results are consistent with a proposed model for asymmetrical docking of the convex side of tRNA to the dimer.  相似文献   

10.
The monomer-dimer equilibrium of the glycophorin A (GpA) transmembrane (TM) fragment has been used as a model system to investigate the amino acid sequence requirements that permit an appropriate helix-helix packing in a membrane-mimetic environment. In particular, we have focused on a region of the helix where no crucial residues for packing have been yet reported. Various deletion and replacement mutants in the C-terminal region of the TM fragment showed that the distance between the dimerization motif and the flanking charged residues from the cytoplasmic side of the protein is important for helix packing. Furthermore, selected GpA mutants have been used to illustrate the rearrangement of TM fragments that takes place when leucine repeats are introduced in such protein segments. We also show that secondary structure of GpA derivatives was independent from dimerization, in agreement with the two-stage model for membrane protein folding and oligomerization.  相似文献   

11.
We have used site-directed mutagenesis to probe the structural requirements for catalysis and dimerization of human hepatic methionine adenosyltransferase (hMAT). We built a homology model of the dimeric hMAT III inferred by the crystal structure of the highly homologous Escherichia coli MAT dimer. The active sites of both enzymes comprise the same amino acids and are located in the inter-subunit interface. All of the amino acids predicted to be in the hMAT III active site were mutated, as well as residues in a conserved ATP binding region. All of the mutations except one severely affected catalytic activity. On the other hand, dimerization was affected only by single mutations of three different residues, all on one monomer. The homology model suggested that the side chains of these residues stabilized the monomer and participated in a bridge between subunits consisting of a network of metal and phosphate ions. In agreement with this observation, we demonstrated that dimerization cannot occur in the absence of phosphate.  相似文献   

12.
The unfolding equilibrium of the C-terminal domain of human immunodeficiency virus-1 (HIV-1) capsid protein has been analyzed by circular dichroism and fluorescence spectroscopy. The results for the dimeric, natural domain are consistent with a three-state model (N(2)<-->2I<-->2U). The dimer (N(2)) dissociates and partially unfolds in a coupled cooperative process, into a monomeric intermediate (I) of very low conformational stability. This intermediate, which is the only significantly populated form at low (1 microM) protein concentrations, fully preserves the secondary structure but has lost part of the tertiary (intramonomer) interactions found in the dimer. In a second transition, the intermediate cooperatively unfolds into denatured monomer (U). The latter process is the equivalent of a two-state unfolding transition observed for a monomeric domain in which Trp184 at the dimer interface had been truncated to Ala. A highly conserved, disulfide-bonded cysteine, but not the disulfide bond itself, and three conserved residues within the major homology region of the retroviral capsid are important for the conformational stability of the monomer. All these residues are involved also in the association process, despite being located far away from the dimerization interface. It is proposed that dimerization of the C-terminal domain of the HIV-1 capsid protein involves induced-fit recognition, and the conformational reorganization also improves substantially the low intrinsic stability of each monomeric half.  相似文献   

13.
Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, virulence, and host range. In other picornaviruses, homodimerization of 3A has been shown to be relevant for its biological activity. In this work, FMDV 3A homodimerization was evidenced by an in situ protein fluorescent ligation assay. A molecular model of the FMDV 3A protein, derived from the nuclear magnetic resonance (NMR) structure of the poliovirus 3A protein, predicted a hydrophobic interface spanning residues 25 to 44 as the main determinant for 3A dimerization. Replacements L38E and L41E, involving charge acquisition at residues predicted to contribute to the hydrophobic interface, reduced the dimerization signal in the protein ligation assay and prevented the detection of dimer/multimer species in both transiently expressed 3A proteins and in synthetic peptides reproducing the N terminus of 3A. These replacements also led to production of infective viruses that replaced the acidic residues introduced (E) by nonpolar amino acids, indicating that preservation of the hydrophobic interface is essential for virus replication. Replacements that favored (Q44R) or impaired (Q44D) the polar interactions predicted between residues Q44 and D32 did not abolish dimer formation of transiently expressed 3A, indicating that these interactions are not critical for 3A dimerization. Nevertheless, while Q44R led to recovery of viruses that maintained the mutation, Q44D resulted in selection of infective viruses with substitution D44E with acidic charge but with structural features similar to those of the parental virus, suggesting that Q44 is involved in functions other than 3A dimerization.  相似文献   

14.
We report the crystal structure at 1.8-A resolution of human DJ-1, which has been linked to early onset Parkinson's disease. The monomer of DJ-1 contains the alpha/beta-fold that is conserved among members of the DJ-1/ThiJ/PfpI superfamily. However, the structure also contains an extra helix at the C terminus, which mediates a novel mode of dimerization for the DJ-1 proteins. A putative active site has been identified near the dimer interface, and the residues Cys-106, His-126, and Glu-18 may play important roles in the catalysis by this protein. Studies with the disease-causing L166P mutant suggest that the mutation has disrupted the C-terminal region and the dimerization of the protein. The DJ-1 proteins may function only as dimers. The Lys to Arg mutation at residue 130, the site of sumoylation of DJ-1, has minimal impact on the structure of the protein.  相似文献   

15.
The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we show that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.  相似文献   

16.
Gram-negative bacteria use a needle-like protein assembly, the type III secretion apparatus, to inject virulence factors into target cells to initiate human disease. The needle is formed by the polymerization of approximately 120 copies of a small acidic protein that is conserved among diverse pathogens. We previously reported the structure of the BsaL needle monomer from Burkholderia pseudomallei by nuclear magnetic resonance (NMR) spectroscopy and others have determined the crystal structure of the Shigella flexneri MxiH needle. Here, we report the NMR structure of the PrgI needle protein of Salmonella typhimurium, a human pathogen associated with food poisoning. PrgI, BsaL, and MxiH form similar two helix bundles, however, the electrostatic surfaces of PrgI differ radically from those of BsaL or MxiH. In BsaL and MxiH, a large negative area is on a face formed by the helix alpha1-alpha2 interface. In PrgI, the major negatively charged surface is not on the "face" but instead is on the "side" of the two-helix bundle, and only residues from helix alpha1 contribute to this negative region. Despite being highly acidic proteins, these molecules contain large basic regions, suggesting that electrostatic contacts are important in needle assembly. Our results also suggest that needle-packing interactions may be different among these bacteria and provide the structural basis for why PrgI and MxiH, despite 63% sequence identity, are not interchangeable in S. typhimurium and S. flexneri.  相似文献   

17.
The global anaerobic regulator FNR from Escherichia coli is a dimeric Fe-S protein that is inactivated by O(2) through disruption of its [4Fe-4S] cluster and conversion to a monomeric form. As a first step in elucidating the molecular interactions that control FNR dimerization, we have performed alanine-scanning mutagenesis of a potential dimerization domain. Replacement of many hydrophobic residues (Met-143, Met-144, Leu-146, Met-147, Ile-151, Met-157, and Ile-158) and two charged residues (Arg-140 and Arg-145) with Ala decreased FNR activity in vivo. Size exclusion chromatography and Fe-S cluster analysis of three representative mutant proteins, FNR-M147A, FNR-I151A, and FNR-I158A, showed that the Ala substitutions produced specific defects in dimerization. Because hydrophobic side chains are known to stabilize subunit-subunit interactions between alpha-helices, we propose that Met-147, Ile-151, and Ile-158 lie on the same face of an alpha-helix that constitutes a dimerization interface. This alignment would also position Arg-140, Met-144, and Asp-154 on the same helical face. In support of the unusual positioning of a negatively charged residue at the dimer interface, we found that replacing Asp-154 with Ala repaired the defects caused by Ala substitutions of other residues located on the same helical face. These data also suggest that Asp-154 has an inhibitory effect on dimerization, which may be a key element in the control of FNR dimerization by O(2) availability.  相似文献   

18.
Nguyen TL  Breslow E 《Biochemistry》2002,41(18):5920-5930
Determination of the structure of the unliganded monomeric state of neurophysin is central to an understanding of the allosteric relationship between neurophysin peptide-binding and dimerization. We examined this state by NMR, using the weakly dimerizing H80E mutant of bovine neurophysin-I. The derived structure, to which more than one conformer appeared to contribute, was compared with the crystal structure of the unliganded des 1-6 bovine neurophysin-II dimer. Significant conformational differences between the two proteins were evident in the orientation of the 3,10 helix, in the 50-58 loop, in beta-turns, and in specific intrachain contacts between amino- and carboxyl domains. However, both had similar secondary structures, in independent confirmation of earlier circular dichroism studies. Previously suggested interactions between the amino terminus and the 50-58 loop in the monomer were also confirmed. Comparison of the observed differences between the two proteins with demonstrated effects of dimerization on the NMR spectrum of bovine neurophysin-I, and preliminary investigation of the effects of dimerization on H80E spectra, allowed tentative distinction between the contributions of sequence and self-association differences to the difference in conformation. Regions altered by dimerization encompass most binding site residues, providing a potential explanation of differences in binding affinity between the unliganded monomeric and dimeric states. Differences between monomer and dimer states in turns, interdomain contacts, and within the interdomain segment of the 50-58 loop suggest that the effects of dimerization on intrasubunit conformation reflect the need to adjust the relative positions of the interface segments of the two domains for optimal interaction with the adjacent subunit and/or reflect the dual role of some residues as participants both at the interface and in interdomain contacts.  相似文献   

19.
20.
The formation of alpha(2) dimer in Escherichia coli core RNA polymerase (RNAP) is thought to be the first step toward the assembly of the functional enzyme. A large number of evidences indicate that the alpha-subunit dimerizes through its N-terminal domain (NTD). The crystal structures of the alpha-subunit NTD and that of a homologous Thermus aquaticus core RNAP are known. To identify the stabilizing interactions in the dimer interface of the alpha-NTD of E. coli RNAP, we identified side-chain clusters by using the crystal structure coordinates of E. coli alpha-NTD. A graph spectral algorithm was used to identify side-chain clusters. This algorithm considers the global nonbonded side-chain interactions of the residues for the clustering procedure and is unique in identifying residues that make the largest number of interactions among the residues that form clusters in a very quantitative way. By using this algorithm, a nine-residue cluster consisting of polar and hydrophobic residues was identified in the subunit interface adjacent to the hydrophobic core. The residues forming the cluster are relatively rigid regions of the interface, as measured by the thermal factors of the residues. Most of the cluster residues in the E. coli enzyme were topologically and sequentially conserved in the T. aquaticus RNAP crystal structure. Residues 35F and 46I were predicted to be important in the stability of the alpha-dimer interface, with 35F forming the center of the cluster. The predictions were tested by isolating single-point mutants alpha-F35A and alpha-I46S on the dimer interface, which were found to disrupt dimerization. Thus, the identified cluster at the edge of the dimer interface seems to be a vital component in stabilizing the alpha-NTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号