首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In previous work, we proposed a novel modified one-step fermentation fed-batch strategy to efficiently generate l-lactic acid (l-LA) using Rhizopus oryzae. In this study, to further enhance efficiency of l-LA production through one-step fermentation in fed-batch cultures, we systematically investigated the initial peptone- and glucose-feeding approaches, including different initial peptone and glucose concentrations and maintained residual glucose levels. Based on the results of this study, culturing R. oryzae with initial peptone and glucose concentrations of 3.0 and 50.0 g/l, respectively, using a fed-batch strategy is an effective approach of producing l-LA through one-step fermentation. Changing the residual glucose had no obvious effect on the generation of l-LA. We determined the maximum LA production and productivity to be 162 g/l and 6.23 g/(l·h), respectively, during the acid production stage. Compared to our previous work, there was almost no change in l-LA production or yield; however, the productivity of l-LA increased by 14.3%.  相似文献   

2.
Powdered activated carbon-treated lignocellulosic syrup prepared from energy cane bagasse was evaluated as a potential feedstock in the production of fumaric acid by Rhizopus oryzae ATCC® 20344?. Energy cane bagasse was pretreated with dilute ammonia and enzymatically hydrolyzed with commercially available enzymes, Cellic® CTec2 and HTec2. The collected hydrolysate samples were subjected to powdered activated carbon adsorption for the removal of non-sugar compounds (i.e., organic acids, furaldehydes, total phenolic compounds) and concentrated to a final 65°Bx syrup (mostly xylose and glucose sugars). The use of lignocellulosic syrup, the effect of nitrogen source, medium additives, and initial pH in the seed culture medium on fungal morphology were investigated. The carbon to nitrogen (C/N) ratio in the acid production medium was also optimized for maximum yields in fumaric acid production. Optimum seed culture medium conditions (2.0 g/L urea, 3.0 pH) produced the desired compact, smooth, and uniform fungal pellets. Optimum acid production medium conditions (400 C/N ratio, 0.2 g/L urea) resulted in a fumaric acid production of 34.20 g/L, with a yield of 0.43 g/g and a productivity of 0.24 g/L/h. These results were comparable to those observed with the control medium (pure glucose and xylose). The present study demonstrated that lignocellulosic syrup processed from dilute ammonia pretreated energy cane bagasse has potential as a renewable carbon source for fumaric acid fermentation by Rhizopus oryzae ATCC® 20344?.  相似文献   

3.
Summary Polyurethane foam cubes were employed as carriers to immobilize Rhizopus oryzae for L(+)-lactic acid production. The immobilizing capacity reached 450 g-fresh cell/l-cube. The production rate of L(+)-lactic acid could be threefold increased by using the immobilized R. oryzae. The immobilized cells could be steadily used in repetitive fermentations for more than 10 batches.  相似文献   

4.
The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris–sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.  相似文献   

5.
The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent Km and Vmax for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month’s storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %.  相似文献   

6.
The purpose of this study was to investigate the potential of immobilized lead- and cadmium-resistant Pseudomonas putida strain PT to remove heavy metals from aqueous medium under extreme conditions. The tolerance and accumulation of cadmium and lead ions by strain PT were investigated by minimal inhibitory concentration (MIC) determination and polymerase chain reaction (PCR) of cadA gene, respectively. The surface chemical functional groups of P. putida PT involved in the metal biosorption were identified by Fourier transform infrared (FTIR). Pseudomonas putida PT was immobilized in three matrices include carboxy-methyl cellulose (CMC), rice bran, and a new composite made of alginate, polyvinyl alcohol (PVA), and CaCO3 to prepare heavy metal adsorbent. The biosorbents were analyzed by SEM, and their metal removal capability was assayed in two consecutive cycles by atomic absorption spectroscopy. The viability of immobilized bacterial cells was determined by flow cytometry during storage at 4 °C and exposure to the environmental stresses (pH and temperature). The results showed that PT strain was resistant up to 10 mM Pb2+ and 8 mM Cd2+. FTIR analysis revealed that alcohol, sulfur, phosphate, esters, and amide groups played important roles in metal biosorption process and, also change in metabolic reactions like hydration and polyesters accumulation was observed after metal biosorption. The presence of cadA gene, a heavy metal translocating pump-coding gene, indicated the ability of metals bioaccumulation by the PT strain. Immobilized cells in alginate–PVA–CaCO3 and rice bran showed the highest metal removal efficiency for Pb2+ as 75% and Cd2+ as 96.7%, respectively. Metal adsorbents were reusable, and the highest removal efficiency in the second cycle was observed in inoculated alginate–PVA–CaCO3 (79.5% Pb2+ and 45% Cd2+). Flow cytometric analysis represented that the immobilized cell viability was retained (<?97%) after 4 weeks storage at 4 °C. Viability under two environmental stresses in all matrices was as follows: <?96% at 25 °C, <?87% at 45 °C, <?85% at pH 4,?<?96% at pH 7, and?<?89% at pH 11. The results signify that these metal adsorbents are efficient technological tools for bioremediation even in harsh environmental conditions.  相似文献   

7.
Simultaneous saccharification and ethanol fermentation (SSF) of sago starch using amyloglucosidase (AMG) and immobilized Zymomonas mobilis ZM4 on sodium alginate was studied. The immobilized Zymomonas cells were more thermo-stable than free Zymomonas cells in this system. The optimum temperature in the SSF system was 40°C, and 0.5% (v/w) AMG concentration was adopted for the economical operation of the system. The final ethanol concentration obtained was 68.3 g/l and the ethanol yield, Yp/s, was 0.49 g/g (96% of the theoretical yield). After 6 cycles of reuse at 40°C with 15% sago starch hydrolysate, the immobilized Z. mobilis retained about 50% of its ethanol fermenting ability.  相似文献   

8.
A photosynthetic algal microbial fuel cell (PAMFC) was constructed by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells to fulfill electricity generation, biomass production and wastewater treatment. The immobilization conditions, including the concentration of immobilized matrix, initial inoculation concentration and cross-linking time, were investigated both for the growth of C. vulgaris and power generation. It performed the best at 5 % sodium alginate and 2 % calcium chloride as immobilization matrix, initial inoculation concentration of 106 cell/mL and cross-linking time of 4 h. Our findings indicated that C. vulgaris immobilization was an effective and promising approach to improve the performance of PAMFC, and after optimization the power density and Coulombic efficiency improved by 258 and 88.4 %, respectively. Important parameters such as temperature and light intensity were optimized on the performance. PAMFC could achieve a COD removal efficiency of 92.1 %, and simultaneously the maximum power density reached 2,572.8 mW/m3 and the Coulombic efficiency was 14.1 %, under the light intensity of 5,000 lux and temperature at 25 °C.  相似文献   

9.
In this study, the degradation of tetradecyltrimethylammonium bromide (TTAB) by freely suspended and alginate-entrapped cells from the bacteria Pseudomonas putida (P. putida) A ATCC 12633 was investigated in batch cultures. The optimal conditions to prepare beads for achieving a higher TTAB degradation rate were investigated by changing the concentration of sodium alginate, pH, temperature, agitation rate and initial concentration of TTAB. The results show that the optimal embedding conditions of calcium alginate beads are 4 % w/v of sodium alginate content and 2 × 108 cfu ml?1 of P. putida A ATCC 12633 cells that had been previously grown in rich medium. The optimal degradation process was carried out in pH 7.4 buffered medium at 30 °C on a rotary shaker at 100 rpm. After 48 h of incubation, the free cells degraded 26 mg l?1 of TTAB from an initial concentration of 50 mg l?1 TTAB. When the initial TTAB concentration was increased to 100 mg l?1, the free cells lost their degrading activity and were no longer viable. In contrast, when the cells were immobilized on alginate, they degraded 75 % of the TTAB after 24 h of incubation from an initial concentration of 330 mg l?1 of TTAB. The immobilized cells can be stored at 4 °C for 25 days without loss of viability and can be reused without losing degrading capacity for three cycles.  相似文献   

10.
The effect of cell storage at ?18°C for 18–24 months on reproductive capacity was investigated for various microorganisms (gram-positive and gram-negative bacteria, yeasts, and filamentous fungi) immobilized in poly(vinyl alcohol) cryogel. To examine the viability of immobilized cells after defrosting, the bioluminescent method of intracellular ATP determination was used. A high level of metabolic activity of immobilized cells after various periods of storage was recorded for Streptomyces anulatus, Rhizopus oryzae, and Escherichia coli, which are producers of the antibiotic aurantin, L(+)-lactic acid, and the recombinant enzyme organophosphate hydrolase, respectively. It was shown that the initial concentration of immobilized cells in cryogel granules plays an important role in the survival of Str. anulatus and Pseudomonas putida after 1.5 years of storage. It was found that, after slow defrosting in the storage medium at 5°C for 18 h of immobilized cells of the yeast Saccharomyces cerevisiae that had been stored for nine months, the number of reproductive cells increased due to the formation of ascospores.  相似文献   

11.
Production of gallic acid using the immobilized cells of Rhizopus oryzae has been studied. It was observed that 2% tannic acid concentration, 200 numbers of calcium alginate beads of spore concentration 2?×?105/ml and initial pH 5.0 gave the maximum gallic acid production. The % of tannin conversion was 78.5% whereas in free cell culture, the % conversion was 83.5% in 4 days of incubation period. The beads were used for 3 times successfully. A drastic fall in the hydrolysis process was observed when the beads were treated with glutaraldehyde.  相似文献   

12.
Rhizopus oryzae was immobilized in polyurethane foam cubes by a natural attachment method. The effect of inorganic salts on the stability of the immobilized mycelium in repetitive batch productions of L(+)-lactic acid was studied. The amount of the inorganic salts necessary to maintain the activity of the immobilized R. oryzae in the repetitive batch fermentations strongly depended upon the initial glucose concentrations. For example, the amount of the inorganic salts should be doubled if the initial glucose concentration was twice increased. The minimum amounts of the inorganic salts were therefore determined for effective lactic acid productions in the repetitive batch fermentations with the immobilized R. oryzae.  相似文献   

13.
Production of extracellular alkaline protease by a locally isolated fungal species, Rhizopus oryzae, under solid state fermentation was optimized. The maximum enzyme activity under the optimum conditions of temperature (32?°C), relative humidity (90%–95%), spore count (~2?×?105/g wheat bran), moisture content of solid substrate (140%) adjusted suitably with salt solution (M-9) of pH?5.5 was 341 unit/g wheat bran.  相似文献   

14.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

15.
This work aims to produce 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) from ascorbic acid and β-cyclodextrin with immobilized α-cyclodextrin glucanotransferase (α-CGTase) from recombinant Escherichia coli. Molecular sieve (SBA-15) was used as an adsorbent, and sodium alginate was used as a carrier, and glutaraldehyde (GA) was used as a cross-linker. The effects of several key variables on α-CGTase immobilization were examined, and optimal immobilization conditions were determined as the following: glutaraldehyde (GA, cross-linker) 0.01% (v/v), SBA-15 (adsorbent) 2 g/L, CaCl2 3 g/L, sodium alginate 20 g/L, adsorption time 3 h, and immobilization time 1 h. In comparison with free α-CGTase, immobilized α-CGTase had a similar optimal pH (5.5) and a higher optimal temperature (45 °C). The continuous production of AA-2G from ascorbic acid and β-cyclodextrin in the presence of immobilized α-CGTase was carried out, and the highest AA-2G production reached 21 g/L, which was 2-fold of that with free α-CGTase. The immobilization procedure developed here was efficient for α-CGTase immobilization, which was proved to be a prospective approach for the enzymatic production of AA-2G.  相似文献   

16.
(+)-Terrein is a fungal metabolite with multiple biological activities, especially with great value in medicine. However, the mass production of single configuration terrein is still a big challenge. In this study, the effects of acetic acid, sodium acetate, citric acid and sodium citrate on the (+)-terrein production by Aspergillus terreus strain PF26 derived from marine sponge Phakellia fusca were investigated. Sodium citrate was selected for fed-batch cultivation because it showed the best effect on (+)-terrein production among the four regulators tested. As a result, 5.38 g/L (+)-terrein production was achieved by feeding 10 mM sodium citrate on the 3rd day in shake flask, which was 33.8 % higher than the control and represented the highest yield of (+)-terrein. In a 7.5-L stirred bioreactor, 2.58 g/L of (+)-terrein production was achieved by the feeding of 10 mM sodium citrate on the 8th day. The results from this study lay a basis for the high-yield production of (+)-terrein by fermentation.  相似文献   

17.
Progenin III, one of the most active spirostanol saponins, is a potential candidate for anti-cancer therapy due to its strong antitumor activity and low hemolytic activity. However, the concentration of progenin III is extremely low in natural Dioscorea plants. In this paper, the progenin III production from total steroidal saponins of Dioscorea nipponica Makino was studied using the crude enzyme from Aspergillus oryzae DLFCC-38. The crude enzyme converting total steroidal saponins into progenin III was obtained from the A. oryzae DLFCC-38 culture. For enzyme production, the strain was cultured for 72 h at 30 °C with shaking at 150 rpm in 5 % (w/v) malt extract medium containing 2 % (v/v) extract of D. nipponica as the enzyme inducer. The crude enzyme converted total steroidal saponins into major progenin III with a high yield when the reaction was carried out for 9 h at 50 °C and pH 5.0 with the 20 mg/ml of substrate. In the preparation of progenin III, 117 g of crude progenin III was obtained from 160 g of substrate, and the crude product was purified with silica gel column to obtain 60.3 g progenin III of 93.4 % purity.  相似文献   

18.
Pseudomonas nitroreducens MILB-8054A isolated from petroleum-contaminated soil, immobilized on calcium alginate beads, and under resting cell condition, produced biosurfactants. Immobilized cells gave a best yield of 5.6 g rhamnolipid l?1 using sucrose as carbon source. Time course study using resting cells showed that 2 % v/v of palm oil (preculture carbon source) and 10 % diesel (carbon source) gave the best rhamnolipid yield of 5.1 g l?1 at pH 8 and temperature of 30 °C. Carbon utilization by resting cells was compared with that of growing cells. The best biosurfactant recovery procedure was acetone extraction.  相似文献   

19.
The fungal species ofRhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30°C was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%–85.5% associated with 1.5–2.0 g/L fungal biomass produced in 36 h of fermentation.  相似文献   

20.
The aims of the study were the production improvement, the purification, the characterization and the activity investigation of chitosanase CSNV26 of Bacillus subtilis (V26). The gene csnV26 encoding for this protein was amplified and cloned in the pBAD vector then expressed in Escherichia coli (Top10). The SDS-PAGE and zymogram analysis of the recombinant protein showed that it has two active forms sized 27 and 31 kDa, corresponding to the protein with and without signal peptide. This protein has the particularity of being secreted by Top10-pBAD-csnV26 with a high yield of 6.2 g/l. The HPLC purification of CSNV26 from supernatant confirmed the presence of the two sizes. The investigation of the CSNV26 thermostability showed that the pure protein is highly stable keeping 68 % of its activity after 30-min treatment at 100 °C, contrarily to the protein present within the supernatant of E. coli and B. subtilis (V26). The molecular dynamics study of the predicted structure of protein in both forms showed that the presence of the peptide signal in the form of 31 kDa gave it a remarkable thermal stability. The antifungal activity of CSNV26 was evidenced on Rhizopus nigricans and Rhizopus oryzae. Indeed, it has provoked an alteration and embrittlement of their hyphae with onset of protoplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号