首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low cost fermentation media using agricultural by-products (wheat bran extract, rice bran extract and soybean meal extract) as a major nutrient source, were evaluated for the production of tyrosinase from the fungus Auricularia auricula in submerged culture. In single-factor experiments, three components (wheat bran extract, casein and CuSO4) were chosen to further optimize medium composition using response surface methodology (RSM). The central composite experimental results showed the following optimum medium composition: wheat bran extract 36.0 %, casein 1.1 g/l and CuSO4 0.13 g/l. Under these conditions, the highest tyrosinase activity was 17.22 U/ml, which was 2.1 fold higher than that obtained using the non-optimized medium. The present study is the first to report the statistical optimization of medium composition for production of tyrosinase by A. auricula using cheaper wheat bran extract as a major nutrient source. These results might provide a reference for the development of a cost-effective medium for commercial production of tyrosinase.  相似文献   

2.
In order to obtain a high ethanol yield from the Jerusalem artichoke raw extract and reduce the fermentation cost, we have engineered a new recombinant Saccharomyces cerevisiae strain that could produce ex-inulinase. The response surface methodology based on Plackett–Burman and Box–Behnken design was used to optimize the medium for the ethanol production from the Jerusalem artichoke raw extracts by the recombinant strain. In the first optimization step, Plackett–Burman design was employed to select significant factors, including concentrations of yeast extract, inoculum, and MgSO4·7H2O. In the second step, the steepest ascent experiment was carried out to determine the center point with the three significant factors; the selected combinations were further optimized using the Box–Behnken design. The maximum ethanol production rate was predicted at 91.1 g/l, which was based on a medium consisting of yeast extract 9.24 g/l, inoculum 39.8 ml/l, and MgSO4·7H2O 0.45 g/l. In the validating experiment, the ethanol fermentation rate reached 102.1 g/l, closely matching the predicted rate.  相似文献   

3.
Thermophilic fungi are potential sources of thermostable enzymes and other value added products. Present study has focused on optimization of different physicochemical parameters for production of thermostable cellulases and xylanase by Thermoascus aurantiacus RCKK under SSF. Enzyme production was supported maximally on wheat bran fed with 20 % inoculum, at initial pH 5, temperature 45 °C and moisture ratio 1:3. The supplementation of wheat bran with yeast extract, Tween-80 and glycine further improved enzyme titres (CMCase 88 IU/g, FPase 15.8 IU/g, β-glucosidase 25.3 IU/g and xylanase 6,543 IU/g). The crude enzymes hydrolyzed phosphoric acid-swollen wheat straw, avicel and untreated xylan up to 74, 71 and 90 %, respectively. In addition, T. aurantiacus RCKK produced antioxidants as fermentation by-products with significant %DPPH? scavenging, FRAP and in vivo antioxidant capacity against H2O2-treated Saccharomyces cerevisiae. These capabilities show that it holds potential to exploit crop by-products for providing various commodities.  相似文献   

4.
The optimisation of submerged culture conditions and nutritional requirements was studied for the production of exopolysaccharide (EPS) fromPleurotus nebrodensis. The optimal temperature and initial pH for both mycelial growth and EPS production in shake flask cultures were 25 °C and 8.0, respectively. Maltose was found the most suitable carbon source for both mycelial biomass and EPS production. Yeast extract was favourable nitrogen source for both mycelial biomass and EPS production. Optimum concentration of each medium component was determined using the orthogonal matrix method. The optimal combination of the media constituents for mycelial growth and EPS production was as follows: 200 g l?1 bran, 25 g l?1 maltose, 3 g l?1 yeast extract, 1 g l?1 KH2PO4, 1 g l?1 MgSO4 7H2O. Under the optimal conditions, the mycelial biomass (4.13 g l?1) and EPS content (2.40 g l?1) ofPleurotus nebrodensis was 2.3 and 3.6 times compared to the control with basal medium respectively.  相似文献   

5.
Bacillus cereus ZH14 was previously found to produce a new type of antiviral ribonuclease, which was secreted into medium and active against tobacco mosaic virus. In order to enhance the ribonuclease production, in this study the optimization of culture conditions using response surface methodology was done. The fermentation variables including culture temperature, initial pH, inoculum size, sucrose, yeast extract, MgSO4·7H2O, and KNO3 were considered for selection of significant ones by using the Plackett–Burman design, and four significant variables (sucrose, yeast extract, MgSO4·7H2O, and KNO3) were further optimized by a 24 factorial central composite design. The optimal combination of the medium constituents for maximum ribonuclease production was determined as 8.50 g/l sucrose, 9.30 g/l yeast extract, 2.00 g/l MgSO4·7H2O, and 0.62 g/l KNO3. The enzyme activity was increased by 60%. This study will be helpful to the future commercial development of the new bacteria-based antiviral ribonuclease fermentation process.  相似文献   

6.
Antrodia camphorata is a well-known Chinese medicinal mushroom that protects against diverse health-related conditions. Submerged fermentation of A. camphorata is an alternative choice for the effective production of bioactive metabolites, but the effects of nutrition and environment on mycelial morphology are largely unknown. In this study, we show that A. camphorata American Type Culture Collection 200183 can form arthrospores in the end of liquid fermentation. Different morphologies of A. camphorata in submerged culture were analyzed using scanning electron microscopy. The optimal carbon and nitrogen sources for sporulation were soluble starch and yeast extract. We found that a carbon-to-nitrogen ratio (C/N) of 40:1, MgSO4 (0.5 g/l), KH2PO4 (3.0 g/l), an initial pH?5.0, and an inoculum size of 1.5?×?105 spores/ml led to maximum production of arthroconidia. Our results will be useful in the regulation and optimization of A. camphorata cultures for efficient production of arthroconidia in submerged culture, which can be used as inocula in subsequent fermentation processes.  相似文献   

7.
For efficient bioconversion of lignocellulosic materials to bioethanol, the study screened 19 white-rot fungal strains for their endocellulolytic activity and saccharification potential. Preliminary qualitative and quantitative screening revealed Cotylidia pannosa to be the most efficient endocellulase producing fungal strain when compared to the standard strain of Trichoderma reesei MTCC 164. Ensuing initial screening, the production of endocellulase was further optimized using submerged fermentation to recognize process parameters such as temperature, time, agitation pH, and supplementation of salts in media required for achieving maximum production of endocellulase. The strain C. pannosa produced the maximum amount of endocellulase (8.48 U/mL) under submerged fermentation with wheat bran (2%) supplemented yeast extract peptone dextrose (YEPD) medium after an incubation time of 56 h at 30 °C and pH 5.0 at an agitation rate of 120 rpm with a saccharification value of 50.5%. The fermentation of wheat bran hydrolysate with Saccharomyces cerevisiae MTCC 174 produced 4.12 g/L of bioethanol after 56 h of incubation at 30 °C. The results obtained from the present investigation establish the potential of white-rot fungus C. pannosa for hydrolysis and saccharification of wheat bran to yield fermentable sugars for their subsequent conversion to bioethanol, suggesting its application in efficient bioprocessing of lignocellulosic wastes.  相似文献   

8.
We aimed to optimize a nutrient medium containing agricultural waste for xylanase production by Bacillus pumilus B20. Xylanase production with lignocellulosic material was optimized in two steps using DeMeo’s fractional factorial design. A 3.4-fold increase in xylanase production (313.3 U/mL) was achieved using the optimized culture medium consisting of (g/L): K2HPO4, 2; MgSO4·7H2O, 0.3; CaCl2·2H2O, 0.01; NaCl, 2; peptone, 5 yeast extract, 4; and wheat bran, 50. B. pumilus B20 produced a high level of xylanase, which may have potential industrial application.  相似文献   

9.
A novel bacterial isolate, capable of producing extracellular highly thermostable, halo-alkali-stable and cellulase-free xylanase, was isolated from soil and identified as Bacillus halodurans TSPV1 by polyphasic approach. The Plackett–Burman design identified wheat bran, lactose, tryptone and NaCl as the factors that significantly affect xylanase production, and thus, these were optimized by response surface methodology. The data analysis suggested that optimum levels of wheat bran (15–20 g L?1), lactose (1.0–1.5 g L?1), tryptone (2–2.5 g L?1) and NaCl (7.0–8.0 g L?1) support 6.75-fold higher xylanase production than that in the un-optimized medium. The xylanase is optimally active at 90 °C and pH 10, and stable for 4 h at 90 °C (T 1/2 60 h) over a broad range of NaCl concentrations (0–29 %). This is the first report on the isolation of polyextremophilic B. halodurans strain that produces thermo-halo-alkali-stable xylanase in submerged fermentation. This enzyme efficiently saccharifies agro residues like wheat bran and corncobs. Fifty-six percent of hemicellulose of wheat bran could be hydrolyzed by xylanase (100 U g?1 substrate) along with cellulase (22 U FPase and 50 U CMCase g?1). The xylanase, being thermo-alkali stable and cellulase free, can find applications in pre-bleaching of paper pulps and hydrolysis of xylan in agricultural residues.  相似文献   

10.
Optimal C:N ratio for the production of red pigments by Monascus ruber   总被引:1,自引:0,他引:1  
The carbon-to-nitrogen (C:N) ratio in the biomass of microfungi tends to be quite different (e.g. 10–15) compared with the C:N ratio in the red pigments (e.g. >20) of the fungus Monascus ruber. Therefore, determining an optimal C:N ratio in the culture medium for maximizing the production of the pigments is important. A culture medium composition is established for maximizing the production of the red pigment by the fungus M. ruber ICMP 15220 in submerged culture. The highest volumetric productivity of the red pigment was 0.023 AU L?1 h?1 in a batch culture (30 °C, initial pH of 6.5) with a defined medium of the following composition (g L?1): glucose (10), monosodium glutamate (MSG) (10), MgSO4·7H2O (0.5), KH2PO4 (5), K2HPO4 (5), ZnSO4·7H2O (0.01), FeSO4·7H2O (0.01), CaCl2 (0.1), MnSO4·H2O (0.03). This medium formulation had a C:N mole ratio of 9:1. Under these conditions, the specific growth rate of the fungus was 0.043 h?1 and the peak biomass concentration was 6.7 g L?1 in a 7-day culture. The biomass specific productivity of the red pigment was 1.06 AU g?1 h?1. The best nitrogen source proved to be MSG although four other inorganic nitrogen sources were evaluated.  相似文献   

11.
Aim: Lactobacillus fermentum is a widely utilized probiotic compound fed as an alternative to antibiotics for growth promotion in a wide variety of livestock species. The objective of this research is to develop an economical and practical fermentation medium for the growth of Lact. fermentum using response surface methodology. Methods and Results: A two‐level Plackett–Burman design was used to determine which factors in the fermentation medium influence the growth of Lact. fermentum. Under our experimental conditions, peptone, urea and yeast extract were found to be major factors. Then, the steepest ascent method and the central composite design were applied to optimize the culture of Lact. fermentum. The following composition of the fermentation medium was estimated to be the most economical formula (per litre): 30 g corn syrup, 15 g glucose, 14·4 g peptone, 7 g (NH4)2SO4, 0·5 g urea, 3 g sodium acetate, 4 g sodium citrate, 0·1 g MnSO4·4H2O, 0·5 g MgSO4·7H2O, 7·3 g yeast extract, 0·5 g K2HPO4. Conclusion: Based on 10 side‐by‐side comparisons, we found that the yield of Lact. fermentum using our fermentation medium was 64% greater than those using modified de Man, Rogosa and Sharp broth (MRS) medium (1·8 × 109 CFU ml?1vs 1·1 × 109 CFU ml?1, respectively), while the cost was 89% lower than MRS. This research indicates that it is possible to increase bacterial yield by using inexpensive materials. Significance and Impact of the Study: It is more likely that the use of Lact. fermentum as a probiotic will increase. The low cost medium developed in this research can be used for large‐scale, commercial application where economics are quite likely to be important.  相似文献   

12.
The fermentation medium and conditions for the production of cordycepin were optimized in static culture using single-factor experiments, Placket–Burman design, a central composite design, and response surface methodology. Among seven variables including temperature, pH, and the concentrations of glucose, tryptone, yeast extract, KH2PO4, and MgSO4 · 7H2O, temperature and the concentrations of yeast extract and tryptone were found to be the important factors that significantly affected cordycepin production. The optimized medium consisted of yeast extract 9.00 g/L and tryptone 17.10 g/L, while the optimized culture conditions consisted of seed age 3 days, with an inoculum size of 10% and incubation temperature of 27.1°C. A maximum cordycepin yield of 7.35 g/L was achieved in a 5-L fermenter under the optimized conditions. Next, cordycepin was partially purified and determined. The resulting product showed 90.54% high-performance liquid chromatography (HPLC)–ultraviolet (UV) purity. Therefore, cordycepin was applied to a cell viability assay on SH-SY5Y cells and RM-1 cells. Cordycepin can inhibit the proliferation of RM-1 cells with IC50 of 133 µmol/L, but it has no inhibitory effect on SH-SY5Y cells.

Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.  相似文献   

13.
A newly isolated anti-Streptococcus suis bacteriocin-producing strain LPL1-5 was obtained from healthy unweaned piglets' fecal matter, and was designated as Lactobacillus pentosus LPL1-5 based on morphology, biochemical properties, and 16S rDNA sequencing analysis. The medium composition for enhanced bacteriocin production by L. pentosus LPL1-5 was optimized by statistical methodology. Yeast extract, K2HPO4 · 3H2O, and MnSO4 · H2O were identified as significant components influencing pentocin LPL1-5 production using the Plackett–Burman method. Response surface methodology was applied for further optimization. The concentrations of medium components for enhanced pentocin LPL1-5 production were as follows (g/L): lactose 20.00, tryptone 10.00, beef extract 10.00, yeast extract 14.00, MnSO4 · H2O 0.84, K2HPO4 · 3H2O 4.92, triammonium citrate 2.00, Na-acetate 5.00, MgSO4 · 7H2O 0.58, Tween 80 1.00. Under the optimized condition, a value of 3154.65 ± 27.93 IU/mL bacteriocin activity was achieved, which was 4.2-fold that of the original medium.  相似文献   

14.
采用液体发酵蝉拟青霉,对蝉拟青霉的发酵条件进行优化,以提高蝉拟青霉胞外多糖产量及生物量。摇瓶发酵条件下,在单因素基础上设计正交实验确定各因素的最佳组合。优化后得最佳发酵培养基:蔗糖8%,牛肉膏0.75%,酵母膏0.125%,MgSO_4·7H_2O 0.3%,KH_2PO_4 0.2%,麸皮0.5%。该条件下胞外多糖产量为5.96 g/L,生物量为42 g/L,较优化前提高了1倍。采用发酵罐进行扩大培养,对分批发酵时的初糖浓度进行了优化,并分析了补料分批发酵对发酵过程的影响。发酵罐培养时最适初糖浓度为5%,此时生物量最高为38 g/L,多糖含量最高为5.5 g/L;采用补料分批发酵时,多糖产量最高为5.89 g/L,生物量最高为40 g/L,效果优于分批发酵。  相似文献   

15.
Fungi able to degrade agriculture wastes were isolated from different soil samples, rice straw, and compost; these isolates were screened for their ability to produce β-glucosidase. The most active fungal isolate was identified as Talaromyces pinophilus strain EMOO 13-3. The Plackett–Burman design is used for identifying the significant variables that influence β-glucosidase production under solid-state fermentation. Fifteen variables were examined for their significances on the production of β-glucosidase in 20 experimental runs. Among the variables screened, moisture content, Tween 80, and (NH4)2SO4 had significant effects on β-glucosidase production with confidence levels above 90% (p < 0.1). The optimal levels of these variables were further optimized using Box–Behnken statical design. As a result, the maximal β-glucosidase activity is 3648.519 U g?1, which is achieved at the following fermentation conditions: substrate amount 0.5 (g/250 mL flask), NaNO3 0.5 (%), KH2PO4 0.3 (%), KCl 0.02 (%), MgSO4 · 7H2O 0.01 (%), CaCl2 0.01 (%), yeast extract 0.07 (%), FeSO4 · 7H2O 0.0002 (%), Tween 80 0.02 (%), (NH4)2SO4 0.3 (%), pH 6.5, temperature 25°C, moisture content 1 (mL/g dry substrate), inoculum size 0.5 (mL/g dry substrate), and incubation period 5 days.  相似文献   

16.
《Process Biochemistry》1999,34(4):325-328
Solid state cultivation of Streptomyces clavuligerus for cephamycin C production was carried out in a system consisting of wheat rawa 5 g; cotton seed deoiled cake 5 g; sunflower cake 0·5 g; corn steep liquor 1 g; MgSO4.7H2O 0·06 g; CaCO3 0·1 g; K2HPO4 4·4 g; with initial moisture content of 80%, initial pH 6·5 and a fermentation temperature in the range 28–30°C. The fermentation cycle was about 5 days. Streptomyces clavuligerus growth was observed on the 2nd day and production of cephamycin C was initiated on 3rd day. Abundant mycelial growth was observed from the 3rd day and reached stationary phase by the 5th day. Cephamycin C was produced maximally at a rate of 15 mg/g substrate on the 5th day and was stable until the 30th day with only marginal decrease in titre.  相似文献   

17.
β-Exoglucanase production on the lignocellulosic material, wheat bran, by Aspergillus niger under solid state fermentation (SSF) on a laboratory scale was investigated. Different fermentation parameters, such as moisture content, initial pH, temperature, depth of the substrate, and inoculum size on exoglucanase production were optimized. Moisture content of 40 %, pH of 7.0, substrate depth of 1.0 cm, inoculum size of 2?×?106 spores/g of wheat bran, and temperature at 30 °C were optimal for maximum production of exoglucanase. Maximum yields of exoglucanase with 28.60 FPU/g of wheat bran were obtained within 3 days of incubation under optimal conditions.  相似文献   

18.
This study was conducted to elucidate cultivation conditions determining Bacillus amyloliquefaciens B-1895 growth and enhanced spore formation during the solid-state fermentation (SSF) of agro-industrial lignocellulosic biomasses. Among the tested growth substrates, corncobs provided the highest yield of spores (47?×?1010 spores g?1 biomass) while the mushroom spent substrate and sunflower oil mill appeared to be poor growth substrates for spore formation. Maximum spore yield (82?×?1010 spores g?1 biomass) was achieved when 15 g corncobs were moistened with 60 ml of the optimized nutrient medium containing 10 g peptone, 2 g KH2PO4, 1 g MgSO4·7H2O, and 1 g NaCl per 1 l of distilled water. The cheese whey usage for wetting of lignocellulosic substrate instead water promoted spore formation and increased the spore number to 105?×?1010 spores g?1. Addition to the cheese whey of optimized medium components favored sporulation process. The feasibility of developed medium and strategy was shown in scaled up SSF of corncobs in polypropylene bags since yield of 10?×?1011 spores per gram of dry biomass was achieved. In the SSF of lignocellulose, B. amyloliquefaciens B-1895 secreted comparatively high cellulase and xylanase activities to ensure good growth of the bacterial culture.  相似文献   

19.
An endophytic fungus SR06 was isolated from a leaf of Amomum villosum Lour., which had a high antagonistic effect on Colletotrichum musae with an inhibition ratio of 41.20%. The antifungal substances could be secreted into fermentation broth, which had a high inhibitory activity. Strain SR06 was identified as Trametes elegans according to internal transcribed spacer sequence analysis. Response surface methodology (RSM) was used to optimise the process parameters of antifungal substances production. Using the Plackett–Burman design, three variables (glucose, yeast extract and MgSO4·7H2O) exerted significant effects on antifungal substances production. Then RSM experiments were conducted to further optimise the three variables. The optimal medium components were 26.45?g/L glucose, 10?g/L peptone, 14.96?g/L yeast extract and 1.49?g/L MgSO4·7H2O, and the optimal initial pH was 6.0, with a culture temperature of 28°C and a shaking speed of 180?rpm. Under the optimised conditions, a significant improvement in the production of antifungal substances by T. elegans SR06 was accomplished, and the inhibition zone diameter was up to 29.2?mm after culturing for 7d. The average control efficacy of the fermentation supernatant of SR06 against C. musae was 51.29% on banana fruits, which was significantly higher than that of the fungicide carbendazim.  相似文献   

20.
Exploration of novel active anti-tumor compounds from marine microbes for pharmaceutical applications has been a continuously hot spot in natural product research. Bacterial growth and metabolites may greatly vary under different culture conditions. In this study, the effects of different culture conditions and medium components on the growth and bioactive metabolites of Serratia proteamacula 657, an anti-tumor bacterium found in our previous study, were investigated. The results showed that lower temperature, weak acidic condition and solid fermentation favored the bacterial growth and the production of active compounds. Four components in the culture medium, NaCl, peptone, yeast extract and MgSO4, were found important to the bacterial growth and active compounds production in medium optimization. Under the optimized condition of solid state fermentation at pH 6.0–7.0, 23–25 °C, with the MgSO4-free medium containing 10.0 g/L peptone, 1.0 g/L yeast extract and 19.45 g/L NaCl, the antitumor activity of S. proteamacula 657 and the yield of crude extracts increased about 15 times and 6 times than the sample obtained in the original liquid fermentation, respectively. The active components in the metabolites of S. proteamacula 657 were identified as a homolog of prodigiosin, a red bacterial pigment, based on the analysis of the NMR and GC–MS. The bacterium S. proteamacula 657, which is adapted to lower temperature, produced prodigiosin-like pigments with highly antitumor activity, suggesting the bacterium is a potential new source for prodigiosin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号